

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

MEF Standard

MEF 78.1

MEF Core Model (MCM)

July 2020

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Disclaimer

© MEF Forum 2020. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any recipient
and is believed to be accurate as of its publication date. Such information is subject to change
without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume
responsibility to update or correct any information in this publication. No representation or
warranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or
applicability of any information contained herein and no liability of any kind shall be assumed by
MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the recipient or
user of this document. MEF is not responsible or liable for any modifications to this document
made by any other party.

The receipt or any use of this document or its contents does not in any way create, by implication
or otherwise:

a) any express or implied license or right to or under any patent, copyright, trademark or
trade secret rights held or claimed by any MEF member which are or may be associated
with the ideas, techniques, concepts or expressions contained herein; nor

b) any warranty or representation that any MEF members will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such
announced product(s) and/or service(s) embody any or all of the ideas, technologies, or
concepts contained herein; nor

c) any form of relationship between any MEF member and the recipient or user of this
document.

Implementation or use of specific MEF standards, specifications, or recommendations will be
voluntary, and no Member shall be obliged to implement them by virtue of participation in MEF
Forum. MEF is a non-profit international organization to enable the development and worldwide
adoption of agile, assured and orchestrated network services. MEF does not, expressly or
otherwise, endorse or promote any specific products or services.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page i

Table of Contents
1 List of Contributing Members ... 1

2 Abstract .. 2

3 Terminology and Abbreviations .. 3

4 Compliance Levels .. 6

5 Numerical Prefix Conventions ... 6

6 Introduction ... 7

7 MEF Core Model (MCM) .. 9

7.1 Overview of the MCM .. 9
7.1.1 The Top Portion of the MCM .. 11
7.1.2 MCMEntity Hierarchy ... 15
7.1.3 MCMInformationResource Hierarchy ... 15
7.1.4 Top Portion of the MCMMetaData Hierarchy... 16
7.1.5 MCM Compliance ... 20
7.1.6 Alignment With Other SDOs ... 21
7.1.7 Alignment with Existing MEF Work ... 21

7.2 Overview of Changes .. 23
7.3 MCMRootEntity Class Definition ... 24
7.4 The MCMEntity Hierarchy ... 27
7.5 MCMEntity Class Definition... 29

7.5.1 MCMEntityHasMCMMetaDataDetail Class Definition ... 33
7.6 MCMUnManagedEntity Class Hierarchy ... 36

7.6.1 MCMUnManagedEntity Class Definition ... 37
7.6.2 MCMLocation Class Design.. 39

7.6.2.1 Requirements .. 39
7.6.2.2 Design... 40

7.6.3 MCMLocation Class Definition .. 41
7.6.4 MCMLocationAtomic Class Definition .. 48
7.6.5 MCMLocationComposite Class Definition ... 48
7.6.6 MCMPhysicalEntity Class Definition ... 51
7.6.7 MCMPhysicalEntityAtomic Class Definition ... 56
7.6.8 MCMPhysicalEntityComposite Class Definition .. 56

7.7 MCMDomain Class Hierarchy .. 61
7.7.1 MCMDomain Class Definitiion ... 62
7.7.2 MCMManagementDomain Class Definition ... 62
7.7.3 MCMMgmtDomainAtomic Class Definition .. 64
7.7.4 MCMMgmtDomainComposite Class Definition ... 65

7.8 MCMBusinessObject Class Hierarchy .. 67
7.8.1 MCMBusinessObject Class Definition .. 68
7.8.2 MCMAggregatingBusinessObject Class Definition .. 70
7.8.3 MCMSimpleBusinessObject Class Definition .. 71

7.9 MCMManagedEntity Class Hierarchy .. 71
7.9.1 MCMManagedEntity Class Definition .. 73
7.9.2 MCMDefinition Class Hierarchy ... 81

7.9.2.1 MCMDefinition Class Definition ... 81
7.9.2.2 MCMDefinitionDecorator Class Definition... 82

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page ii

7.9.2.3 MCMBusinessTerm Class Definition ... 82
7.9.2.4 MCMFeature Class Description .. 87
7.9.2.5 MCMProductFeature Class Definition .. 87
7.9.2.6 MCMService Feature Class Definition .. 88
7.9.2.7 MCMResourceFeature Class Definition .. 88
7.9.2.8 MCMOffer Class Definition ... 88
7.9.2.9 MCMProductOffer Class Definition .. 91
7.9.2.10 MCMServiceOffer Class Definition ... 93
7.9.2.11 MCMResourceOffer Class Definition .. 94

7.9.3 MCMPolicyObject Class Definition .. 96
7.9.4 MCMProduct Class Hierarchy ... 97

7.9.4.1 MCMProduct Class Definition... 97
7.9.4.2 MCMProductAtomic Class Definition ... 98
7.9.4.3 MCMProductComposite Class Definition ... 98

7.9.5 MCMService Class Hierarchy ... 101
7.9.5.1 MCMService Class Definition .. 101
7.9.5.2 MCMServiceAtomic Class Definition .. 102
7.9.5.3 MCMServiceComposite Class Definition... 102
7.9.5.4 MCMDeliveredService Class Definition .. 105
7.9.5.5 MCMOrderedService Class Definition .. 108
7.9.5.6 MCMInternalService Class Definition ... 109
7.9.5.7 MCMServiceDecorator Class Definition ... 109
7.9.5.8 MCMServiceComponent Class Definition ... 113

7.9.6 MCMServiceEndpoint Class Definition .. 114
7.9.7 MCMResource Class Hierarchy .. 115

7.9.7.1 MCMResource Class Definition... 115
7.9.7.2 MCMVirtualResource Class Definition ... 116
7.9.7.3 MCMVirtualResourceAtomic Class Definition .. 116
7.9.7.4 MCMVirtualResourceComposite Class Definition .. 117
7.9.7.5 MCMLogicalResource Class Definition .. 119
7.9.7.6 MCMLogicalResourceAtomic Class Definition ... 121
7.9.7.7 MCMLogicalResourceComposite Class Definition ... 121
7.9.7.8 MCMCatalog Class Definition... 124
7.9.7.9 MCMCatalogItem Class Definition ... 130
7.9.7.10 MCMServiceInterface Class Definition ... 131

7.10 MCMParty Class Hierarchy .. 133
7.10.1 MCMParty Class Definition .. 134
7.10.2 MCMOrganization Class Definition .. 137
7.10.3 MCMPerson Class Definition .. 139

7.11 The InformationResource Class Hierarchy ... 141
7.11.1 MCMInformationResource Class Definition ... 141
7.11.2 MCMNetworkAddress Class Definition.. 146
7.11.3 MCMContact Class Definition .. 146
7.11.4 MCMGeocode Class Definition .. 147

7.12 The MCMMetaData Class Hierarchy .. 149
7.12.1 MCMMetaData Class Definition ... 149
7.12.2 MCMRole Class Hierarchy.. 152

7.12.2.1 MCMRole Class Definition .. 152
7.12.2.2 MCMPartyRole Class Definition ... 154
7.12.2.3 MCMCustomer Class Definition .. 156
7.12.2.4 MCMServiceProvider Class Definition ... 157

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page iii

7.12.2.5 MCMAccessProvider Class Definition .. 157
7.12.2.6 MCMPartner Class Definition ... 157

7.12.3 MCMPolicyRole Class Definition ... 158
7.12.4 MCMPolicyMetaData Class Definition ... 158
7.12.5 MCMGeoSpatialMetaData Class Definition ... 158
7.12.6 MCMMetaDataDecorator Class Definition ... 160

7.12.6.1 MCMCapability Class Definition... 162
7.12.6.2 MCMNetworkFunction... 162

7.12.6.2.1 Background .. 162
7.12.6.2.2 Rationale for Changing the Definition of a NetworkFunction ... 162
7.12.6.2.3 MCMMEFNetworkFunction Class Definition... 163

7.12.6.3 MCMMEFDescriptor ... 163
7.12.6.3.1 Background .. 163
7.12.6.3.2 Rationale for Changing the Defintiion of a Descriptor .. 164
7.12.6.3.3 MCMMEFDescriptor Class Definition .. 164

7.12.6.4 MCMVersion Class Definition ... 165

8 MEF Types .. 173

8.1 Introduction ... 173
8.2 MCMAdminState .. 173
8.3 MCMCustomerStatus .. 174
8.4 MCMEntityEnable... 175
8.5 MCMGeoMethod .. 176
8.6 MCMGeoMethodAug ... 178
8.7 MCMMetaDataEnableStatus ... 179
8.8 MCMOperState ... 180
8.9 MCMProductOrderType ... 183

9 References .. 185

Appendix A Basic Mapping between the MCM and TMF Models 186

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page iv

List of Figures
Figure 1. The Lifecycle Service Orchestration Reference Architecture .. 7
Figure 2. The Top Portion of the MCM Class Hierarchy .. 11
Figure 3. The Policy Pattern Applied to MCMEntityHasMCMMetaDataDetail 15
Figure 4. The Top Portion of the MCMInformationResource Hierarchy 16
Figure 5. The Top Portion of the MCMMetaData Hierarchy .. 18
Figure 6. MCMEntity Subclasses .. 27
Figure 7. MCMUnManagedEntity Subclasses .. 36
Figure 8. Representing Geocodes in MCM ... 40
Figure 9. MCMLocation and MCMPhysicalEntity Hierarchies .. 41
Figure 10. MCMDomain Subclasses ... 61
Figure 11. MCMBusinessObject Subclasses ... 67
Figure 12. ManagedEntity Subclasses ... 71
Figure 13. MCMDefinition Class Hierarchy ... 81
Figure 14. The MCMProductDefinedByMCMProductOffer Aggregation 93
Figure 15. The MCMServiceDefinedByMCMService Offer Aggregation 94
Figure 16. The MCMResourceDefinedByMCMResourceOffer Aggregation 95
Figure 17. The MCMProduct Class Hierarchy .. 97
Figure 18. The MCMService Class Hierarchy .. 101
Figure 19. The MCMResource Class Hierarchy, Part 1 .. 115
Figure 20. The MCMResource Class Hierarchy, Part 2 .. 120
Figure 21. MCMResource Class Hierarchy, Part 3 ... 124
Figure 22. MCMParty Class Hierarchy ... 133
Figure 23. The MCMInformationResource Class Hierarchy .. 141
Figure 24. The MCMMetaData Class Hierarchy, Part 1 ... 149
Figure 25. The MCMMetaData Class Hierarchy, Part 2 ... 152
Figure 26. MCM Enumerations ... 173

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page v

List of Tables
Table 1. Terminology and Abbreviations .. 5
Table 2. Numerical Prefix Conventions... 6
Table 3. Attributes of the MCMRootEntity Class ... 25
Table 4. Operations of the MCMRootEntity Class .. 26
Table 5. Functions of the MCMEntity Class and its Subclasses ... 28
Table 6. Operations of the MCMEntity Class ... 32
Table 7. Attributes of the MCMEntityHasMCMMetaDataDetail Association Class.................. 34
Table 8. Operations of the MCMEntityHasMCMMetaDataDetail Association Class 35
Table 9. Functions of the MCMUnManagedEntity Class and its Subclasses.............................. 37
Table 10. Attributes of the MCMUnManagedEntity Class ... 38
Table 11. Operations of the MCMUnManagedEntity Class .. 38
Table 12. Attributes of the MCMLocation Class... 43
Table 13. Operations of the MCMLocation Class ... 46
Table 14. Operations for the MCMLocationComposite Class .. 50
Table 15. Attributes of the MCMPhysicalEntity Class ... 53
Table 16. Operations for the MCMPhysicalEntity Class... 56
Table 17. Operations of the MCMPhysicalEntityComposite Class... 59
Table 18. Functions of the MCMDomain Class and its Subclasses .. 62
Table 19. Operations of the MCMManagementDomain Class ... 64
Table 20. Operations of the MCMManagementDomainComposite Class 66
Table 21. Functions of the MCMBusinessObject and its Subclasses .. 68
Table 22. Attributes of the MCMBusinessObject Class .. 69
Table 23. Operations of the MCMBusinessObject Class .. 70
Table 24. Functions of the MCMManagedEntity Class and its Subclasses 73
Table 25. Attributes of the MCMManagedEntity Class .. 76
Table 26. Operations of the MCMManagedEntity Class... 80
Table 27. Attributes of the MCMBusinessTerm Class .. 83
Table 28. Operations of the MCMBusinessTerm Class .. 86
Table 29. Operations of the MCMOffer Class... 91
Table 30. Attributes of the MCMProductOffer Class .. 92
Table 31. Operations of the MCMProductOffer Class .. 92
Table 32. Operations of the MCMProduct Class ... 98
Table 33. Operations of the MCMProductComposite Class ... 100
Table 34. Operations of the MCMService Class ... 102
Table 35. Operations for the MCMServiceComposite Class ... 104
Table 36. Operations for the MCMDeliveredService Class .. 108
Table 37. Operations of the MCMServiceDecorator Class ... 113
Table 38. Operations of the MCMVirtualResource Class ... 116
Table 39. Operations of the MCMVirtualResourceComposite Class .. 119
Table 40. Operations of the MCMLogicalResource Class .. 121
Table 41. Operations of the MCMLogicalResource Class .. 123
Table 42. Operations of the Catalog Class... 130
Table 43. Operations of the MCMCatalogItem Class ... 131
Table 44. Functions of the MCMParty Class and its Subclasses ... 133
Table 45. Operations of the MCMParty Class ... 136

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page vi

Table 46. Attributes of the MCMOrganization Class .. 137
Table 47. Operations of the MCMOrganization Class .. 138
Table 48. Attributes of the MCMPerson Class .. 139
Table 49. Operations of the MCMInformationResource Class ... 145
Table 50. Attributes of the MCMGeocode Class... 148
Table 51. Attributes of the MCMMetaData Class ... 150
Table 52. Operations of the MCMMetaData Class ... 151
Table 53. Attributes of the MCMRole Class ... 153
Table 54. Operations of the MCMRole Class .. 154
Table 55. Attributes of the MCMPartyRole Class ... 154
Table 56. Operations of the MCMRole Class .. 155
Table 57. Attributes of the MCMCustomer Class ... 156
Table 58. Operations of the MCMCustomer Class .. 157
Table 59. Attributes of the MCMGeoSpatialMetaData Class ... 159
Table 60. Operations of the MCMGeoSpatialMetaData Class .. 159
Table 61. Operations of the MCMMetaDataDecorator Class ... 161
Table 62. Attributes of the MCMVersion Class .. 169
Table 63. Operations of the MCMVersion Class... 172
Table 64. AdminState Enumeration Definition ... 174
Table 65. MCMCustomer Enumeration Definition ... 175
Table 66. MCMEntityEnable Enumeration Definition .. 176
Table 67. MCMGeoMethod Enumeration Definition ... 178
Table 68. MCMGeoMethodAug Enumeration Definition... 179
Table 69. MCMMetaDataEnableStatus Enumeration Definition .. 180
Table 70. MCMOperState Enumeration Definition... 183
Table 71. MCMProductOrderType Enumeration Definition ... 184
Table 72. Brief Comparison of MCM and TMF625 Classes... 187

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 1

1 List of Contributing Members

The following members of the MEF participated in the development of this document and have
requested to be included in this list.

x Futurewei

x PCCW Global

x Spirent

x Verizon

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 2

2 Abstract

This specification defines the MEF Core Information Model (MCM), which is an information
model describing the base set of object definitions and relationships supporting the concepts
defined in the MEF Lifecycle Service Orchestration (LSO) Reference Architecture (RA). The
MCM formalizes these diverse concepts into a coherent, object-oriented information model that
can serve the needs of multiple MEF projects by defining key concepts and functions that can be
reused or refined as necessary.

This specification uses UML (Unified Modeling Language) to describe the salient characteristics
and behavior of entities that are important to the managed environment. This does not mean that
the MCM will tr\ and model ³ever\thing´; rather, it means that it will represent key entities that
various MEF projects need. For example, the Sonata Ordering project needs the concept of an
Order. MCM provides a basic set of model elements to represent this (see section 7) as a reusable
pattern, so that other similar concepts (e.g., TroubleTicket) can use the same pattern (adjusted as
necessary to suit the differences between TroubleTicket and Order). As another example, ONF
TAPI is used to model lower-level resources in NRM and NRP. A higher-level representation of
resources is required in order to join this lower-level model to other entities (e.g., Products and
Offers). The MCM provides the basis for this higher-level representation.

These entities, and the relationships between them, describe concepts used by different functional
components (e.g., the Service Orchestration Functionality (SOF) and Infrastructure Control and
Manager (ICM), as well as different actors (e.g., business applications, as well as Customers,
Application Developers, and Administrators) that are designing, implementing, and deploying
LSO functionality. The model elements (e.g., classes, attributes, relationships, and operations)
defined in this model are not specific to Carrier Ethernet, and are intended to define a
comprehensive abstract model from which more specific models can be extended.

The MCM is built on modeling best practices (e.g., [5][6][8]), and uses a number of software
patterns (e.g., [2][3][4]) to provide an extensible framework that can support model-driven
engineering [9] as well as the needs of DevOps-inspired automation. It defines concepts and
functions that can be represented to define data exchanged at all seven of the Interface Reference
Points defined in [1].

Put another way, the MCM serves as a common lexicon for all MEF models. It defines a set of
concepts and terms, and relationships between them, in an object-oriented information model. This
makes it independent of any specific architectural paradigm (e.g., resource- or service-oriented
architectures).

As MEF models evolve, and define new concepts, those concepts will be added to the MCM if
they can be used by multiple teams.

This document normatively includes the content of the following Papyrus UML files as if they
were contained within this document from the MEF GitHub Repository (https://github.com/MEF-
GIT/MEF-Common-Model): MCM.di, MCM.notation, and MCM.uml.

https://github.com/MEF-GIT/MEF-Common-Model
https://github.com/MEF-GIT/MEF-Common-Model

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 3

3 Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative definitions to
terms are found in other documents. In these cases, the third column is used to provide the
reference that is controlling, in other MEF or external documents.

Term Definition Reference

Abstract Class An abstract class is a class that cannot be directly
instantiated. It can have abstract or concrete subclasses.

THIS
DOCUMENT

Abstraction
Abstraction is the process of focusing on the important
characteristics and behavior of a concept, and ignoring
less important characteristics and behavior.

THIS
DOCUMENT

Class
A class is a template for defining a specific type of object
that exhibits a common set of characteristics and
behavior.

THIS
DOCUMENT

Classification
Theory

The principles that govern the organization of objects
into groups according to their similarities and differences
or their relation to a set of criteria.

THIS
DOCUMENT

Concrete Class

A concrete class is a class that can be directly
instantiated. Once a class has been defined as concrete in
the hierarchy, all of its subclasses are required to be
concrete.

THIS
DOCUMENT

Customer

A Customer is the organization purchasing, managing,
and/or using Connectivity Services from a Service
Provider. This may be an end user business organization,
mobile operator, or a partner network operator.

[13]

Data Model

A data model is a representation of concepts of interest to
an environment in a form that is dependent on data
repository, data definition language, query language,
implementation language, and/or protocol (typically, but
not necessarily, all five).

THIS
DOCUMENT

Information
Model

An information model is a representation of concepts of
interest to an environment in a form that is independent
of data repository, data definition language, query
language, implementation language, and protocol.

THIS
DOCUMENT

https://www.merriam-webster.com/dictionary/criteria

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 4

Term Definition Reference

LSO (Lifecycle
Service
Orchestration)

Open and interoperable automation of management
operations over the entire lifecycle of Layer 2 and Layer
3 Connectivity Services. This includes fulfillment,
control, performance, assurance, usage, security,
analytics and policy capabilities, over all the network
domains that require coordinated management and
control in order to deliver the service.

MEF 55 [1]

LSO RA (LSO
Reference
Architecture)

A layered abstraction architecture that characterizes the
management and control domains and entities, and the
interfaces among them, to enable cooperative
orchestration of Connectivity Services. Note that in this
document, cooperative orchestration is NOT limited to
only Connectivity Services, and may include other
services as well.

MEF 55 [1]

Metadata

Metadata is a class that contains prescriptive and/or
descriptive information about the object(s) to which it is
attached. While metadata can be attached to any
information model element, this document only considers
metadata object instances attached to class instances and
relationships.

THIS
DOCUMENT

Model Element
An element of a model. For the purposes of this
document, this refers to a set of classes, attributes,
operations, constraints, and/or relationships.

THIS
DOCUMENT

Object An instance of a (concrete) class. THIS
DOCUMENT

Pattern

A pattern describes a named, generic, reusable solution to
a problem that applies to a particular context. A pattern is
not a finished design, but rather, is a reusable template
that defines a set of objects, and their interactions, that
can be adapted to meet the context-specific needs
required to solve a problem.

[2] [11]

Relationship For the purposes of this document, a relationship can be
any type of association, aggregation, or composition.

THIS
DOCUMENT

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 5

Term Definition Reference

Role

The Role-Object pattern enables an object to adapt to the
needs of different applications and contexts by
transparently attaching and/or removing Role Objects.
Each Role Object defines a set of responsibilities that the
object has to pla\ in that client¶s context. Each context
may be its own application, which therefore gets
decoupled from other applications. The Role-Object
pattern is implemented in the MCM by aggregating Role
objects, which are defined as a type of Metadata, to other
objects (to enforce the separation of defining an object
vs. defining responsibilities that the object has to play).

[3]

Service Provider

The organization providing Ethernet Service(s). Note that
in this document, as well as in [1], the (Service Provider)
organization is NOT limited to providing only Ethernet
Services.

[13]

Unified Modeling
Language (UML)

The objective of UML is to provide system architects,
software engineers, and software developers with tools
for analysis, design, and implementation of software-
based systems as well as for modeling business and
similar processes.

OMG UML
2.5 [10]

Whole-Part
Relationship

A whole-part relationship is one in which one set of
entities aggregates another set of entities. In such a
relationship, three objects are created (the entity doing
the aggregation, the set aggregated entities, and the
combination of the aggregating entity and its aggregated
entities).
More formally, a whole-part relationship is a partial
ordering that is reflexive, transitive, and anti-symmetric
(i.e., everything is a part of itself, any part of any part of
an entity is itself a part of that entity, and two distinct
entities cannot be part of each other).

Various; see
for example
Stanford
Encyclopedia
of Philosophy

Table 1. Terminology and Abbreviations

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 6

4 Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",
and "OPTIONAL" in this document are to be interpreted as described in BCP 14 (RFC 2119 [7],
RFC 8174 [16]) when, and only when, they appear in all capitals, as shown here. All key words
must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx] for
required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD NOT)
are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words MAY or
OPTIONAL) are labeled as [Ox] for optional.

5 Numerical Prefix Conventions

This document uses the prefix notation to indicate multiplier values as shown in Table 2.

Decimal Binary
Symbol Value Symbol Value
k 103 Ki 210

M 106 Mi 220
G 109 Gi 230
T 1012 Ti 240
P 1015 Pi 250
E 1018 Ei 260
Z 1021 Zi 270
Y 1024 Yi 280

Table 2. Numerical Prefix Conventions

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 7

6 Introduction
The Lifecycle Service Orchestration Reference Architecture (LSO RA) [1] describes the control
and management domains, and the main functional management entities contained in those
domains, that enable cooperative LSO capabilities. The architecture also defines the Interface
Reference Points (IRPs), which are the logical points of interaction between specific functional
management entities. These IRPs are specified in part by Interface Profiles and implemented by
APIs. The High-Level LSO Reference Architecture is shown in Figure 1. This is a functional
architecture, and hence, does not describe how the functional management entities are
implemented (e.g., single vs. multiple instances). Rather, it identifies functional management
entities that provide logical functionality as well as the points of interaction among them.

This specification uses UML (Unified Modeling Language) to describe the salient characteristics
and behavior of entities that are important to the managed environment. These entities, and the
relationships between them, describe concepts used by different functional components, such as
the Service Orchestration Functionality (SOF) and the Infrastructure and Control Manager (ICM),
as well as different actors (e.g., business applications, as well as Customers, Application
Developers, and Administrators) that are designing, implementing, and deploying LSO
functionality. Figure 1 shows three different domains (Service Provider, Partner, and Customer).

Figure 1. The Lifecycle Service Orchestration Reference Architecture

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 8

The scope of the MCM is to model concepts and functions as seen from the Service Provider¶s
point-of-view. This includes interactions between the Service Provider and its Partners, as well as
interactions between the Service Provider and its Customers. Hence, the MCM is potentially
relevant for all seven IRPs defined in MEF 55.

This document is intended for developers and users that need the formalism that an information
model provides. An information represents concepts, along with their relationships and semantics,
to help specify an extensible and structured, shareable, information repository.

The remainder of this document defines the MCM. First, a high-level Overview of the MCM is
provided in section 7.1. This section also includes brief, informative text to enable the reader to
understand important design decisions that were taken in the development of the MCM. Then,
section 7.1.1 defines the top of the MCM class hierarchy (including how the three main hierarchies
of the MCM interact with each other)., while sections 7.1.2 - 7.1.4 provide overviews of the three
main MCM class hierarchies (MCMEntity, MCMInformationResource, and MCMMetaData).
Section 7.3 defines the MCMRootEntity class while sections 7.4 - 0 define the rest of the
MCMEntity class hierarchy. Finally, sections 7.11 and 7.12 define the MCMInformationResource
and MCMMetaData class hierarchies, respectively.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 9

7 MEF Core Model (MCM)

The MCM is a UML object-oriented information model that represents key functions and concepts
in the Service Provider and Partner Domains of MEF 55 [1]. As such, it also includes key concepts
and functions from other domains that are manipulated by the Service Provider and Partner
domains (e.g., ³Customer´).

7.1 Overview of the MCM

The design of the MCM is explained by summarizing the purpose and semantics of the top-level
classes of the MCM. This results in three sub-hierarchies, one for each subclass of the
MCMRootEntity class, which is the top of the model. Subsequent subsections will then describe
each sub-hierarchy in more detail.

The MCM uses the following rules to define the names of its model elements:

x Naming rules are as follows:

[R1] Class names MUST be in UpperCamelCase (i.e., the first letter is capitalized).
Class names MUST NOT begin with any non-alphabetic character, and no
spaces are allowed.

[R2] Attribute names MUST be in lowerCamelCase (i.e., the first letter is lower case);
attribute names MUST NOT begin with any non-alphabetic character except for
the underscore, and no spaces are allowed. Note that attribute names that begin
with an underscore are private attributes that reference an end of an association.

[R3] Relationship names MUST be in UpperCamelCase (i.e., the first letter is
capitalized). Relationship names MUST NOT begin with any non-alphabetic
character, and no spaces are allowed.

[R4] Each class MUST be prefi[ed with ³MCM´. For e[ample, RootEntit\ is named
³MCMRootEntit\´. This serves two purposes. First, it helps provide context to
textual descriptions of these model elements. Second, it enables MCM model
elements, patterns, and approaches to be compared to those of other SDOs and
consortia unambiguously.

[R5] Each attribute MUST be prefi[ed with ³mcm´. For e[ample, the attribute
³commonName´ in the MCMRootEntit\ class is named ³mcmCommonName´.
If an attribute starts with an underscore, then ³mcm´ immediatel\ follows the
underscore (e.g., _mcmARef).

[R6] Each relationship MUST be prefi[ed with ³MCM´. For e[ample, the
aggregation ³Entit\HasMetaData´ is named ³MCMEntit\HasMCMMetaData´.

[R7] All association classes MUST be suffi[ed with the word ³Detail´. For e[ample,
the association class for the above example is named

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 10

³MCMEntit\HasMCMMetaDataDetail´. This makes it obvious that a class is an
association class.

x Regarding interoperability with concepts from other SDOs:

[R8] All classes that model a concept from another SDO and change the model of that
SDO (e.g., to be able to be used in the MCM) MUST be prefixed with
³MCMMEF´. For e[ample, the concept of a Descriptor from ETSI NFV is
named ³MCMMEFDescriptor´.

[R9] All classes that model a concept from another SDO exactly as it is defined in that
SDO MUST be prefi[ed with ³MCM´, followed b\ the name of the SDO,
followed by the class name. For example, if an SDO named Foo defined a class
named Bar, and MCM imported this concept with no changes, it would be named
MCMFooBar.

A note about associations, aggregations, compositions, and their multiplicity. The UML guidelines
do not specify in detail what valid multiplicities are. In the MCM, multiplicities are important, in
order to provide a robust foundation for code generation, as well as to accommodate the future
incorporation of ontologies Therefore:

[O1] Association relationships MAY have a 0..* - 0..* multiplicity. This is because
they represent a generic dependency, and one end of the association may not be
instantiated yet.

[D1] Aggregation and composition relationships SHOULD NOT have a 0..* - 0«*
[D2] multiplicity. This is because both aggregations and compositions are a type of

whole-part relationship. Ontologically, it is impossible to talk about a ³whole´
when no ³parts´ e[ist (or vice-versa). If there is the possibility of not
instantiating the relationship, then the cardinality of the aggregate (or composite)
part SHOULD be 0..1, where the 0 signifies that the relationship has not yet
been instantiated.

[D3] Relationships whose owner (i.e., the source of the relationship) is a value greater
than 0 (e.g., 1 or 1..* or 3..7) SHOULD have a part multiplicity of at least 1.
This is because one side of the relationship must exist, and it makes no sense to
have one side of a relationship e[ist while the other side doesn¶t.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 11

7.1.1 The Top Portion of the MCM

Figure 2 shows the top of the MCM class hierarchy (MCMRootEntity), the first level of inheritance
(consisting of three subclasses), and relationships with their association classes.

Figure 2. The Top Portion of the MCM Class Hierarchy

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 12

MCMRootEntity defines the top of the MCM class hierarchy. Its characteristics and behavior are
thus inherited by all MCM classes. MCMRootEntity defines a set of attributes that enable all
objects to be unambiguously named, described, and identified in a managed environment. Note
that multiple inheritance is disallowed in MEF models. The full definition of the MCMRootEntity
class is defined in Section 7.3.

Figure 2 shows the three subclasses of MCMRootEntity: MCMEntity (see section 7.4),
MCMInformationResource (see section 7.11), and MCMMetaData (see section 7.12). The limit of
three subclasses simplifies the understanding of the model, and uses classification theory to ensure
that objects are organized into groups according to a set of criteria (e.g., their similarities and/or
differences).

The three subclasses create three parallel class hierarchies that can interact with each other. For
example, object instances from the MCMMetaData class hierarchy are designed to be attached to
object instances from the other two class hierarchies. In addition, classes from the
MCMInfoResource class hierarchy are inherently related to classes from the MCMEntity class
hierarchy.

The three class hierarchies are described as follows:

1) MCMEntity, which is the superclass for objects of interest that are important to
the managed environment, and which have a separate and distinct existence.
These objects can play one or more business functions, and can be managed or
unmanaged (using digital mechanisms). Examples include Chassis (unmanaged)
and Product, Service, and Resource (all three are managed).

2) MCMInformationResource, which is information that is required to describe
concepts owned by other Entities, but which is not an inherent part of the Entity
being described. For example, an IPAddress is an important piece of data, but it

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 13

does not control its own lifecycle; rather, its lifecycle is controlled by another
Resource (e.g., a DHCPServer). The use of MCMInformationResource enables
the IPAddress (in this example) to be represented and associated with the correct
Resource responsible for its lifecycle.

3) MCMMetaData, which is an object that defines descriptive and/or prescriptive
information about the MCMEntity or MCMInformationResource objects that it is
attached to. Examples include versioning information of an object, as well as best
common practice information and context-specific usage guidelines.

Figure 2 also shows three aggregations, called MCMEntityHasMCMInfoResource (see section
7.5), MCMEntityHasMCMMetaData (see section 7.5.1), and MCMInfoResourceHas-
MCMMetaData (see section 7.11.1).

The first aggregation defines the set of MCMInformationResource objects that are associated with
a given set of MCMEntities. The second and third aggregations define the set of MCMMetaData
objects that can be attached to a particular MCMEntity and a given MCMInformationResource,
respectively. All three of these aggregations are implemented as association classes; this enables
the Policy Pattern (see Figure 3) to be used to define policy rules that constrain which part objects
(i.e., MCMInformationResource for the first aggregation, and MCMMetaData for the second and
third) are attached to which MCMEntity (first or second aggregation) or
MCMInformationResource (third aggregation). An example of the Policy Pattern is shown in
Figure 3. Note that MCMPolicyStructure is an abstract class that is the superclass of imperative,
declarative, and intent policy rules.

All MCM association classes are rooted from a single superclass, called MCMRelationshipParent
(which in turn is subclasses from MCMEntity); this simplifies both the design of the association
classes and their implementation. The MCMPolicyStructure, which is a subclass of

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 14

MCMPolicyObject (see section 7.9.3), is the superclass of all policies defined in the MEF Policy
Driven Orchestration project (i.e., imperative, declarative, and intent policies). The above diagram
shows that an object instance of the appropriate concrete subclass of MCMPolicyStructure is
related to class-level attributes and operations of an object instance of the
MCMEntityHasMCMMetaDataDetail association class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 15

Figure 3. The Policy Pattern Applied to MCMEntityHasMCMMetaDataDetail

7.1.2 MCMEntity Hierarchy

The purpose of the MCMEntity is to represent the characteristics and behavior of concepts that are
important to the managed environment. An MCMEntity defines a key concept in the managed
environment, and has a separate and distinct existence (i.e., an MCMEntity is not just a collection
of attributes or an abstraction of behavior).

The MCMEntity hierarchy is the set of subclasses of the MCMEntity class that define the
externally visible characteristics and behavior of the system in more detail. The MCMEntity class
is defined in Section 7.5. The main classes in this hierarchy include MCMUnManagedEntity,
MCMDomain, MCMBusinessObject, MCMManagedEntity, and MCMParty. See Sections 7.6,
7.7, 7.8, 7.9, and 0, respectively, for more information.

7.1.3 MCMInformationResource Hierarchy

The purpose of the MCMInformationResource hierarchy is to represent information and concepts
needed by one or more managed entities that are not inherent to those managed entities. It is shown
in Figure 4.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 16

Figure 4. The Top Portion of the MCMInformationResource Hierarchy

Consider the concepts of a networking device and an IP Address. The networking device may be
modeled in different abstraction levels, ranging from a black box to a detailed model that shows
its constituent manageable components. In either case, an IP Address may be assigned to the
networking device (or a component of the networking device). While the IP Address represents
important information that is managed, the IP Address is not an inherent part of the networking
device. IP Addresses are generated by a different component in the system being managed, and
then assigned to the networking device.

The MCMInformationResource hierarchy defines concepts owned by a set of MCMEntities that
is also needed by a management system, but which is not an inherent part of the MCMEntity being
modeled. Hence, it must be treated as a separate object. In the above example, the IP Address is
defined as a subclass of MCMNetworkAddress, which in turn is a subclass of
MCMInformationResource, and attached to the networking device using the
MCMInformationResourceHasMetaData aggregation.

Note that Figure 4 shows two aggregations, called MCMInformationResourceHasMetaData and
MCMEntityHasMCMInfoResource. The first enables an MCMInformationResource to optionally
aggregate MCMMetaData. The second enables an MCMEntity to be associated with a set of
MCMInformationResources. They are discussed in sections 7.12 and 7.11, respectively

7.1.4 Top Portion of the MCMMetaData Hierarchy

The purpose of MCMMetaData is to describe and/or prescribe information about MCMEntity and
MCMInformationResource objects. Examples include describing best current practices of using
an object, instructing which version(s) of an object to use for a given situation, and to define how
to manage the behavior of the system and its constituent components. This makes MCMMetaData
objects different than both MCMEntities (whose purpose is to describe the constituent components
of a managed system) as well as MCMInformationResource (whose purpose is to describe
information that is not an inherent part of a managed entity, but which nevertheless is important
information for the system being managed and is governed by an MCMEntity).

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 17

More formally, in the MCM, metadata may describe and/or prescribe information about the
object(s) to which it is attached. This is done b\ ³attaching´ the metadata object to another object
using a relationship, which is t\picall\ an aggregation (i.e., a t\pe of ³whole-part´ relationship).
This can be thought of as augmenting the description of that object, and/or attaching management
and control information, to that object. Multiple metadata objects may be attached to any single
object.

There is often debate as to whether something is metadata or not. In the MCM, a very simple rule
is used to make this decision:

[D4] Metadata SHOULD be used to describe a concept that is not part of the inherent
characteristics or behavior of an object.

For example, suppose we were designing a class to represent a Person. An attribute called birthdate
would be reasonable, since it is a characteristic of all People. In contrast, an attribute called
hairColor is not, since a Person may not have any hair; this could instead be conveyed using
metadata. Finally, an attribute called socialSecurityNumber is a poor design for a number of
reasons, including (1) social security numbers are typically used only in the US, and (2) there are
a number of complex geo-political reasons involving whether a person living in the US even has
a social security number.

A much better design is to realize that a social security number is one way to identify a person in
a given context. Hence, a more scalable approach would be to define an association between
Person and another class, called (for example) PersonalIdentifier. Note that this enables different
types of identifiers (e.g., driverLicense, nameAndPassword, biometricData) to be defined a
subclasses of PersonalIdentifier. Since each of these have different metadata (e.g., when they
should be used), metadata could be attached to each type of identifier.

Figure 5 shows that zero or more metadata objects may be attached to zero or more Entity or
InformationResource objects. These are separate aggregations, because the semantics of these
relationships are different in nature. Note that an aggregation defines a whole-part relationship;
this means that three objects are created (the entity that is aggregating metadata, the metadata, and
the combination of the entity and its metadata). These relationships are discussed in sections 7.5.1
and 7.5, respectively.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 18

Figure 5. The Top Portion of the MCMMetaData Hierarchy

Metadata is crucial to designing and implementing model-driven software. Most information
models either do not specify a metadata hierarchy, or define metadata as embedded within a class.
The MCM has chosen to define a separate metadata hierarchy, because:

1) Metadata that is defined within a class makes that metadata available only to that
class; hence, if the same concept (e.g., versioning, or periods of time within which
something is applicable) pertains to other classes, the metadata is captured as
duplicate model elements (e.g., classes, attributes, operations, constraints, and/or
relationships). This creates maintenance issues, as each metadata model object
needs to be separately managed.

2) Creating a metadata hierarchy enables a family of objects to be reused to
represent common information and behavior that apply to other objects. For
example, if the concept of a software version is needed, then defining version as
metadata enables any object in the entire model to use a consistent definition of
software version.

[D5] Metadata SHOULD be optional, since it is used to describe or prescribe the
behavior and semantics of another object.

In the MCM, a separate class hierarchy supports attaching a set of metadata objects that can be
optionally attached to other objects as needed (e.g., depending on context).

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 19

Referring to Figure 5:

x MCMRole is an abstract class, and specializes MCMMetaData. It represents a set
of characteristics and behaviors that an object takes on in a particular context.
This enables an object to adapt to the needs of different clients through
transparently attached role objects. Please see section 7.12.2.1.

x MCMPartyRole is an abstract class, and specializes MCMRole. It represents a set
of unique behaviors played by an MCMParty in a given context. Please see
section 7.12.2.2.

x MCMPolicyRole is an abstract class, and specializes MCMRole. It represents a
set of unique behaviors played by an MCMPolicyObject in a given context.
Please see section 7.12.3.

The following classes are not shown in Figure 5 in order to keep the figure simple. Please see the
appropriate sections for each class for more detail.

x MCMCustomer is a concrete class, and specializes MCMPartyRole. It represents a
particular type of MCMPartyRole that defines a set of people and/or organizations that
buy, manage, or use MCMProducts from an MCMServiceProvider. The MCMCustomer
is financially responsible for purchasing an MCMProduct. The MCMCustomer is the
MCMPartyRole that is purchasing, managing, and/or using Services from an
MCMServiceProvider. This definition is based on the definition from [13]. Please see
section 7.12.2.3.

x MCMServiceProvider is a concrete class, and specializes MCMPartyRole. It represents a
particular type of MCMPartyRole that provides MCMProducts. This specifically includes
MCMServices. This definition is based on the definition from [1]. Please see section
7.12.2.4.

x MCMAccessProvider is a concrete class, and specializes MCMPartyRole. It represents a
particular type of MCMPartyRole that enables MCMPartyRoles (typically
MCMCustomers) to gain entrance to a network (e.g., the Internet), by using an
MCMProduct. This specifically includes MCMServices. Please see section 7.12.2.5.

x MCMPartner is a concrete class, and specializes MCMPartyRole. It represents a
particular type of MCMPartyRole that provides MCMProducts and MCMServices to the
MCMServiceProvider in order to instantiate and manage MCMService elements, such as
MCMServiceComponents, e[ternal to the Service Provider¶s Domain. This definition is
based on the definition from [1]. Please see section 7.12.2.6.

x MCMCapability is an abstract class, and specializes MCMMetaData. It represents a set of
features that are available to be used from an Entity. Each feature may, but does not have
to, be used. Please see section 7.12.6.1.

x MCMMEFNetworkFunction is a concrete class, and specializes MCMCapability. It
generalizes the concept of an ETSI NFV NetworkFunction, and represents the features
and behavior of an MCMManagedEntity that may be used for a given set of external
interfaces while in a particular state. It may specify attributes and operations, as well as
define nested MEFNetworkFunctions. It may also enumerate the actors that use it. Please
see section 7.12.6.2.

x MCMMEFDescriptor is an abstract class, and specializes MCMCapability. It generalizes
the concept of an ETSI NFV Descriptor. For example, metadata-driven technologies do

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 20

not use metadata at design time only; they depend on changing metadata to change
behavior. The ETSI NFV Descriptor is a static, design time collection of metadata. In
contrast, the MCMMEFDescriptor is metadata that can be used at design time as well as
runtime. Please see section 7.12.6.3.

x MCMPolicyMetaData is an abstract class, and specializes MCMMetaData. It represents a
set of features and/or behavior that apply to a particular type of MCMPolicyObject (see
section 7.12.4).

x MCMGeospatialMetaData is an abstract class, and specializes MCMMetaData. It defines
a type of metadata that provides explicit or implicit geographic information. It is defined
in ISO 19115:2013 ³Geographic Information ± Metadata´ [12][12]. Please see section
7.12.5.

7.1.5 MCM Compliance

The MCM defines all common concepts that other models can use.
[D6] In principle, users of a model SHOULD be able to find the basic definitions of

all concepts that their project needs defined in the MCM.
[D7] If a required concept is not defined in the MCM, then that concept SHOULD be

added to either the MCM (if it is generally applicable to other models), or to a
model derived from the MCM; this enables the MCM, and its derived models,
to continually grow and serve the common needs of the MEF modeling
community.

[D8] New concepts that are added to the MCM SHOULD be in the form of a small
number of key model elements.

[D9] Entire models SHOULD NOT be imported into the MCM, as they will likely
not be generally applicable to other projects.

For example, if Policy was not defined in the MCM, and a project needed to use Policy, then that
project should request that Policy be added to the MCM. This does not mean that the entire Policy
model is added to the MCM; rather, a small set of model elements are added to the MCM hierarchy
so that a common Policy model can be built. This is how Policy is currently defined in the MCM.

Note that most projects will need to reference multiple model elements. For example, the Sonata
Ordering project will need to use classes, attributes, and relationships from at least the
MCMUnManagedEntity hierarchy (e.g., locations and physical entities), MCMManagedEntity
hierarchy (e.g., Product, and possible Service, as well as their associated Definitions), MCMParty
hierarchy (e.g., people and organizations), MCMBusinessObject hierarchy (e.g., orders and order
items), and MCMMetaData hierarchy.

[D10] If a project needs to add model elements (e.g., classes, attributes, relationships,
operations, constraints) to the MCM, it SHOULD conform to the principles in
this section.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 21

The following sections define MCM model elements. Classes are not individually designated as
mandatory or optional, because the set of classes that are implemented depends on the application
being realized.

[R10] If a class is implemented, then any mandatory model elements defined by that
class MUST also be implemented.

[R11] Requirement [R10] means that any inherited model elements defined by a class
MUST also be implemented.

[R12] In particular, overriding attributes or operations MUST NOT be done.

Care should be taken in defining relationships. Relationships are inherited by the classes
participating in a relationship.

[D11] Subclasses that inherit relationships from their parent classes SHOULD NOT
define a relationship that has the same behavior as inherited relationships. While
this also applies to attributes and operations, it is much more common in practice
to see this requirement not followed.

7.1.6 Alignment With Other SDOs

The ONF TAPI model currently has a very well developed resource model. MCM is committed to
using this model (perhaps with suitable modifications) over time. This effort will be mostly
complete by version 2 of this model.

Ideally, an object-oriented information model can model a domain regardless of how it is
structured technologically (e.g., using a resource- or service-oriented view). The MCM addresses
this through the use of established design patterns; this enables the modeler to focus on what is
being represented, as opposed to how it is represented (e.g., client-server vs other mechanisms).

At this time, the ONF TAPI model is the only information model being considered for alignment.
Alignment with the TMF API data model is slated for work in a future MCM release.

7.1.7 Alignment with Existing MEF Work

The MEF is currently proceeding with multiple modeling projects. Some of these predate the
MCM. An overarching goal of the MCM is to incorporate these models without invalidating them.
There are three cases to consider: (1) existing models have no superclasses, (2) existing models
have superclasses defined in an external model, such as ONF TAPI, and (3) an existing modeling
project does not use an MCM pattern, and hence, contains objects that do not directly map to
MCM.

The first case is straightforward. MCM, or a model derived from MCM, will define a superclass
for all classes in existing MEF models that have no superclasses. This ensures that all MEF models
share a common namespace, and can inherit key attributes, such as an objectID, a name, and a
description. Note that this case also covers the case of an e[isting model defining its own ³root
class´, since that ³root class´ will inherit from one of MCM¶s three subclasses (MCMEntit\,
MCMInformationResource, or MCMMetaData).

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 22

The second case is more complex, since the existing superclass lives in another model. The current
ONF TAPI model does not have a single superclass, which means that many of its classes do not
have superclasses. Hence, for ONF TAPI specifically, this means ensuring that all classes used
from the ONF TAPI model by a MEF project have a superclass defined either in the MCM, or in
a model derived from the MCM.

The third case is the most complex. For example, ONF TAPI does not use the composite pattern,
and instead, uses recursive relationships. This either requires a model mapping (i.e., the ONF TAPI
class with a recursive relationship is mapped to an MCM composite pattern) or, for special cases,
ignoring the MEF pattern and simply ensuring that the ONF TAPI class inherits from the MCM
(or a model derived from the MCM). That being said, the default approach of MCM is to use the
composite pattern.

Future alignment with the TMF API data model is for further analysis and work in a future release
(note, the TMF API data model is different than a data model produced by the TMF SID; only the
TMF API data model is being currently considered). TMF alignment is harder than TAPI
alignment due to significant structural differences between the TMF API data model and the MCM
± this causes significant semantic differences to be taken into account. Examples include:

x There is no single root class, so some classes have no superclass

x There is no common use of inheritance for key attributes, such as id (rather, they are
defined in a class-specific basis)

x There are significant differences in the inheritance hierarchies

x There are significant differences in patterns used

x There is no metadata class, let alone a metadata class hierarchy, in the TMF models

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 23

7.2 Overview of Changes

This document contains the following changes to the previous release (MEF 78) of this standard:

x Incorporate enhancements to MEF 78 to support changes need by the Ordering and Pre-
Ordering projects; the most important of these are:

o Build a new pattern for representing Ordering and Pre-Ordering classes and
relationships

o Move affected classes from MCM to the MEF Business Model (MBM), which is
part of the Sonata IPS (MEF W77)

o Change multiplicity of the MCMAggregatesSimpleBusinessObject aggregation

o Note that by implementing the above changes, the MCM is stabilized and not
affected (at least for now) by the changes in the Ordering and Pre-Ordering projects

x Reparent the MCMServiceEndpoint class to facilitate representation of different Services
by the MEF Common Services projects

x Update model and corresponding documentation (in this standard) to be more explanatory
and consistent in nature

x Implement minor editorial clarifications

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 24

7.3 MCMRootEntity Class Definition

MCMRootEntity is an abstract class. It is the top of the MEF Core Model (MCM) class hierarchy,
and specifies a set of attributes and relationships that are common to all other classes in the MCM.
The attributes of MCMRootEntity define a common name, a description, and an objectID for all
MEF classes. The objectID is defined modularly, so different namespaces can be defined and
interoperate. The composite object ID is defined using two class attributes: mcmObjectIDContent
and mcmObjectIDFormat. This enables all instances of all objects to be uniquely identified. In the
MCM, all classes are rooted. This simplifies implementation.

Table 3 defines the attributes of the MCMRootEntity class.

Attribute Name Mandatory? Description
mcmCommonName :
String[0..1]

No This is a string, and represents a user-friendly
identifier of an object. It is a name by which the
object is commonly known in some limited scope
(such as an organization) and conforms to the
naming conventions of the scope in which it is
used.

[R13] The mcmCommonName attribute MUST
NOT be used as a naming attribute (i.e., to
uniquely identify an instance of the object).

[D12] If an object does not have a value for the
mcmCommonName attribute, then an
empty string SHOULD be used.

mcmDescription:
String[0..1]

No This is a string, and defines a textual free-form
description of the object.
[D13] If an object does not have an

mcmDescription attribute, then an empty
string SHOULD be returned.

mcmObjectIDContent:
String[1..1]

Yes The mcmObjectIDContent attribute is a string, and
contains the value of the objectID. The
mcmObjectIDFormat attribute defines the type of
identification that is being used for this object
(e.g., URI, GUID, key, or FQDN). The combination
of mcmObjectIDContent and mcmObjectIDFormat
enables the data model developer to define their
own format and content to represent a unique ID
of an object.

[R14] The value of this attribute MUST NOT be a
NULL or EMPTY string.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 25

mcmObjectIDFormat:
String[1..1]

Yes The mcmObjectIDFormat attribute is a string, and
contains the format used by the objectIDContent
attribute (e.g., URI, GUID, key, or FQDN). The
mcmObjectIDContent attribute is a string, and
contains the value of the objectID. The
combination of mcmObjectIDContent and
mcmObjectIDFormat enables the data model
developer to define their own format and content
to represent a unique ID of an object.

[R15] The value of this attribute MUST NOT be a
NULL or EMPTY string.

Table 3. Attributes of the MCMRootEntity Class

Table 4 defines the operations for the MCMRootEntity class. Note that there are no individual
getters and setters for the mcmObjectIDContent and mcmObjectIDFormat attributes, since they
are used together as a tuple.

Operation Name Description

getMCMCommonName() :
String[1..1]

This operation returns this object's mcmCommonName
attribute as at String. It takes no input parameters.
[D14] If the mcmCommonName attribute does not have a

value, then the getMCMCommonName operation
SHOULD return an empty String.

setMCMCommonName(
in inputString : String[1..1])

This operation sets the current value of the
mcmCommonName attribute of this object. It takes a
single String parameter, which contains the new value of
the mcmCommonName attribute.
[D15] An empty string SHOULD be used to define an

empty value for the mcmCommonName attribute.

getMCMObjectID() :
String[2..2]

This operation returns this object's mcmObjectID attribute
as a String of multiplicity [2] The first element contains the
mcmObjectIDContent attribute, and the second contains
the mcmObjectIDFormat attribute. This operation takes
no input parameters.

[R16] If either returned parameter is NULL or an empty
string, then an exception MUST be thrown.

setMCMObjectID(
in objectContent :
String[1..1],
in objectFormat: String[1..1])

This operation sets the current value of the value of the
mcmObjectID. The first input parameter is a String, and
defines the new value of the mcmObjectIDContent
attribute. The second input parameter is a String, and

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 26

defines the new value of the mcmObjectIDFormat
attribute.

[R17] Both parameters MUST NOT be NULL or EMPTY
strings.

getMCMDescription() :
String[1..1]

This operation returns this object's mcmDescription
attribute as at String. It takes no input parameters.
[D16] If the mcmDescription attribute does not have a

value, then the getMCMDescription operation
SHOULD return an empty String.

setMCMDescription(
in inputString : String[1..1])

This operation sets the current value of the
mcmDescription attribute of this object. It takes a single
String parameter, which contains the new value of the
mcmDescription attribute.
[D17] An empty string SHOULD be used to define an

empty value for the mcmCommonName attribute.

Table 4. Operations of the MCMRootEntity Class

Note that there are no relationships (i.e., associations, aggregations, or compositions) defined
that involve RootEntity. This is because any such relationships would apply to the rest of the
MCM classes, and in doing so, would violate many software architecture principles.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 27

7.4 The MCMEntity Hierarchy

MCMEntities represent the characteristics and behavior of the system being managed, and have a
separate and distinct existence. The MCMEntity class has five abstract subclasses, as shown in
Figure 6.

Figure 6. MCMEntity Subclasses

The purpose of the MCMEntity hierarchy is to model the major different types of MCMEntities
that are of interest to the managed environment. From a classification theory point-of-view, this
set of subclasses represent the next level of detail in categorizing what an MCMEntity is. Table 5
defines the purpose of each of these five subclasses of this hierarchy, and aligns them to MEF 55
[1].

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 28

Name of Class Function Relation to MEF 55

MCMEntity
Defines the set of objects that are
important to the managed
environment

Any object that is monitored
or configured is typically a
subclass of MCMEntity.

MCMUnManagedEntity

Represents objects that are
important to the managed
environment, but which have no
inherent ability to digitally
communicate and be managed.
Examples include chassis,
location, and cable duct.

Not mentioned; needed for
inventory and planning

MCMDomain

A collection of MCMEntities that
share a common purpose. In
addition, each constituent
MCMEntity in an MCMDomain
is both uniquely addressable and
uniquely identifiable within that
MCMDomain.

MCMDomain represents
scope of control. It is the
superclass of
MCMManagementDomain,
which is used to apply policy
to
MCMManagementEntities.
Applicable to all MEF55
IRPs.

MCMManagedEntity

Represents objects that have the
following common semantics: (1)
each has the potential to be
managed; (2) each can be
associated with at least one
ManagementDomain; (3) each is
related to Products, Resources,
and/or Services of the system
being managed.

Superclass of Product,
Resource, and Service, as
well as templates for their
creation and management.
Applicable to all MEF55
IRPs.

MCMBusinessObject

Represents business concepts,
such as Orders and OrderItems

Enables Business
Applications to communicate
with other functional
components of the LSO RA
to order Products, Services,
and Resources

MCMParty

Represents either an individual
person or a group of people that
have a set of (possibly
changeable) responsibilities and
functions.

Superclass of Person and
Organization. Applicable to
representing roles that people
or organizations play.

Table 5. Functions of the MCMEntity Class and its Subclasses

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 29

7.5 MCMEntity Class Definition

This is an abstract class, and specializes MCMRootEntity. It represents objects that are important
to the managed environment. Entities represent the characteristics and behavior of the system
being managed, and have a separate and distinct existence. An MCMEntity is not just a collection
of attributes or an abstraction of behavior. The subclasses of MCMEntity may play one or more
business functions, and may be managed or unmanaged (using digital mechanisms). Examples
include Chassis, Rack, and CableDuct (unmanaged) and Product, Service, and Resource
(managed).

This class does not currently define any attributes. Its significance is from an ontological
perspective, as it defines a type of class that is different than its two sibling classes. This is realized
by the presence of its unique relationships compared to its sibling classes.

Table 6 defines the operations for this class.

Operation Name Description

getMCMMetaDataList() :
MCMMetaData[1..*]

This operation returns the set of MCMMetaData
objects that are currently attached to this particular
MCMEntity object. The return value is an array of
one or more objects of type MCMMetaData. This
operation follows all instances of the
MCMEntityHasMCMMetaData aggregation (i.e.,
from this MCMEntity object to each MCMMetaData
object attached to it), and returns the associated
MCMMetaData objects as an array.
[D18] If this object does not have any attached

MCMMetaData, then a NULL
MCMMetaData object SHOULD be returned
by the getMCMMetaDataList operation.

setMCMMetaDataList(
in attachedMetaDataList :
MCMMetaData[1..*])

This operation defines the complete set of
MCMMetaData objects that will be attached to this
particular MCMEntity object. This operation takes a
single input parameter, called attachedMetaDataList,
which is an array of one or more MCMMetaData
objects. This operation creates a set of aggregations
between this particular MCMEntity object and the set
of MCMMetaData objects identified in the input
parameter (i.e., if there is an array of 5
MCMMetaData objects, then 5 aggregations will be
created, where the source for each aggregation is the
MCMEntity object and the destination is the
appropriate MCMMetaData object in the input
parameter list). Note that this operation first deletes
any existing attached MCMMetaData objects (and

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 30

their aggregations and association classes), and then
instantiates a new set of MCMMetaData objects; in
doing so, each MCMMetaData object is attached to
this particular MCMEntity object by first, creating an
instance of the MCMEntityHasMCMMetaData
aggregation, and second, realizing that aggregation
instance as an association class.
[D19] Each aggregation created by the

setMCMMetaDataList operation SHOULD
have an association class (i.e., an instance of
the MCMEnttyHasMCM-MetaDataDetail
class).

setMCMMetaDataPartialList(
in attachedPartialMetaDataList :
MCMMetaData[1..*])

This operation defines a set of one or more
MCMMetaData objects that will be attached to this
particular MCMEntity object WITHOUT affecting
any other existing contained MCMMetaData objects
or the objects that are contained in them. This
operation takes a single input parameter, called
attachedPartialMetaDataList, which is an array of one
or more MCMMetaData objects. This operation
creates a set of aggregations between this particular
MCMEntity object and the set of MCMMetaData
objects identified in the input parameter.
[D20] Each aggregation created by the

setMCMMetaDataPartialList operation
SHOULD have an association class (i.e., an
instance of the
MCMEntityHasMCMMetaDataDetail class).

delMCMMetaDataList()

This operation deletes ALL instances of attached
MCMMetaData for this particular MCMEntity. This
operation first removes the association class, and
second, removes the aggregation, between this
MCMEntity object and each MCMMetaData object
that is attached to this MCMEntity object. This
operation has no input parameters.

delMCMMetaDataPartialList(
in attachedPartialMetaData-List :
MCMMetaData[1..*])

This operation deletes a set of MCMMetaData
objects from this particular MCMEntity. This
operation takes a single input parameter, called
attachedPartialMetaDataList, which is an array of one
or more MCMMetaData objects. This operation first,
removes the association class and second, removes
the aggregation, between each MCMMetaData object
specified in the input parameter and this MCMEntity.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 31

[R18] All other aggregations between this
MCMEntity and other MCMMetaData objects
that are not specified in the input parameter
MUST NOT be affected.

getMCMInfoResourceList() :
MCMInformationResource[1..*]

This operation returns the set of
MCMInformationResource objects that are currently
attached to this particular MCMEntity object. The
return value is an array of one or more objects, of
type MCMInformationResource. This operation
follows all instances of the
MCMEntityHasMCMInfoResource aggregation from
this MCMEntity object to each
MCMInformationResource object attached to it, and
returns the associated MCMInformationResource
objects as an array.
[D21] If this object does not have any attached

MCMInformationResource objects, then a
NULL MCMInformationResource object
SHOULD be returned by the
getMCMInfoResourceList operation.

setMCMInfoResourceList(
in attachedInfoResourceList :
MCMInfoResource[1..*])

This operation defines the complete set of
MCMInformationResource objects that will be
attached to this particular MCMEntity object. This
operation takes a single input parameter, called
attachedInfoResourceList, which is an array of one or
more MCMInformationResource objects. This
operation creates a set of aggregations between this
particular MCMEntity object and the set of
MCMInformationResource objects identified in the
input parameter. Note that this operation first deletes
any existing attached MCMInformationResource
objects (and their aggregations and association
classes), and then instantiates a new set of
MCMInformationResource objects; in doing so, each
MCMInformationResource object is attached to this
particular MCMEntity object by first, creating an
instance of the MCMEntityHasMCMInfoResource
aggregation, and second, realizing that aggregation
instance as an association class.
[D22] Each aggregation created by the

setMCMInfoResourceList operation
SHOULD have an association class (i.e., an
instance of the
MCMEntityHasMCMInfoResourceDetail
class).

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 32

setMCMInfoResourcePartialList(in
attachedInfoResourcePartialList :
MCMInfo-
Resource[1..*])

This operation defines a set of one or more
MCMInformationResource objects that will be
attached to this particular MCMEntity object
WITHOUT affecting any other existing contained
MCMInformationResource objects or the objects that
are contained in them. This operation takes a single
input parameter, called
attachedPartialInfoResourceList, which is an array of
one or more MCMInformationResource objects. This
operation creates a set of aggregations between this
particular MCMEntity object and the set of
MCMInformationResource objects identified in the
input parameter.
[D23] Each created created by the

setMCMInfoResourcePartialList aggregation
SHOULD have an association class (i.e., an
instance of the
MCMEntityHasMCMInfoResourceDetail
class).

delMCMInfoResourceList()

This operation deletes ALL instances of attached
MCMInformationResource objects for this particular
MCMEntity. This operation first, removes the
association class, and second, removes the
aggregation, between this MCMEntity object and
each MCMInformationResource object that is
attached to this MCMEntity object. This operation
has no input parameters.

delMCMInfoResourcePartialList(
in attachedPartialMetaData :
MCMMetaData[1..*])

This operation deletes a set of
MCMInformationResource objects from this
particular MCMEntity. This operation takes a single
input parameter, called
attachedpartialInfoResourceList, which is an array of
one or more MCMInformationResource objects. This
operation first, removes the association class and
second, removes the aggregation, between each
MCMInformationResource object specified in the
input parameter and this MCMEntity.

[R19] All other aggregations between this
MCMEntity and other
MCMInformationResource objects that are
not identified in the input parameter MUST
NOT be affected.

Table 6. Operations of the MCMEntity Class

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 33

MCMEntity defines two relationships, called MCMEntityHasMCMInfoResource and
MCMEntityHasMCMMetaData, as shown in Figure 6.

MCMEntityHasMCMInfoResource is an aggregation, and defines the set of
MCMInformationResource objects that are associated with this particular set of MCMEntity
objects. Its multiplicity is defined to be 0..1 ± 0..*. This means that this aggregation is optional
(i.e., the ³0´ part of the 0..1 cardinalit\). If this aggregation is instantiated (e.g., the ³1´ part of the
0..1 cardinality), then zero or more MCMInformationResource objects can be aggregated by this
particular MCMEntity object. Note that the cardinality on the part side
(MCMInformationResource) is 0..*; this enables an MCMEntity object to be defined without
having to define an association MCMInformationResource object. The semantics of this
aggregation are defined by the MCMEntityHasMCMInfoResourceDetail association class. This
enables the semantics of the aggregation to be defined using the attributes and behavior of this
association class. For example, it can be used to define which MCMInformationResource objects
are allowed to be associated with which MCMEntity objects.

MCMEntityHasMCMMetaData is an aggregation, and defines the set of MCMMetaData objects
that are associated with this particular set of MCMEntity objects. Its multiplicity is defined to be
0..1 ± 0..*. This means that this aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If
this aggregation is instantiated (e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more
MCMMetaData objects can be aggregated by this particular MCMEntity object. Note that the
cardinality on the part side (MCMMetaData) is 0..*; this enables an MCMEntity object to be
defined without having to define an MCMMetaData object for it to aggregate. The semantics of
this aggregation are defined by the MCMEntityHasMCMMetaDataDetail association class. This
enables the semantics of the aggregation to be defined using the attributes and behavior of this
association class. For example, it can be used to define which MCMMetaData objects are allowed
to be associated with which MCMEntity objects.

Both of the above association classes can be further enhanced by using the Policy Pattern (see
Figure 3) to define policy rules that constrain which part objects (i.e., MCMMetaData) are attached
to which object. Note that MCMPolicyStructure is an abstract class that is the superclass of
imperative, declarative, and intent policy rules.

7.5.1 MCMEntityHasMCMMetaDataDetail Class Definition

This is an association class. Its purpose is to define descriptive and/or prescriptive characteristics
and behavior of the MCMEntity object that this MCMMetaData object is aggregated by. Table 7
defines the attributes for this class.

Attribute Name Mandat

ory?
Description

mcmEntityEnableStatus :
MCMEntityEnable[0..1]

NO This enumeration defines whether the MCMEntity
object that this MCMMetaData object refers to is
enabled for normal operation or not. The values are
defined in the MCMEntityEnable enumeration, and
include:

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 34

 ERROR
 INIT
 ENABLED_FOR_ALL
 ENABLED_FOR_TEST_ONLY
 DISABLED
 UNKNOWN
[D24] The default value for the

mcmEntityEnableStatus attribute SHOULD
be 2 Ii.e., ENABLED_FOR_ALL).

mcmEntityValidEndTime:
TimeAndDate[0..1]

NO This is a TimeAndDate attribute; it contains a
datestamp and a timestamp. It defines the date and
time that the MCMEntity to which this
MCMMetaData is attached is no longer valid and
available to be used.
[D25] This attribute SHOULD have a complete and

valid time and/or date.
[O2] The implementation MAY ensure that the

fields in this data type are set to an appropriate
default value.

mcmEntityValidStartTime:
TimeAndDate[0..1]

NO This is a TimeAndDate attribute; it contains a date-
stamp and a timestamp. It defines the date and
time that the MCMEntity to which this
MCMMetaData is attached is valid and available to
be used.
[D26] This attribute SHOULD have a complete and

valid time and/or date.
[O3] The implementation MAY ensure that the

fields in this data type are set to an appropriate
default value.

Table 7. Attributes of the MCMEntityHasMCMMetaDataDetail Association Class

Operation Name Description

getMCMEntityEnableStatus :
MCMEntityEnable[1..1]

This operation returns the mcmEntityEnableStatus of
this set of MCMEntity and MCMMetaData objects. The
return value is one of the literals defined by the
MCMEntityEnable enumeration, and signifies whether
the MCMMetaData applied to this MCMEntity enables
it to be used or not.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 35

setMCMEntityEnableStatus(
in inputStatus :
MCMEntityEnable [1..1])

This operation sets the current value of the
mcmEntityEnableStatus of this set of MCMEntity and
MCMMetaData objects. It takes a single input
parameter, of type MCMEntityEnable, which is an
enumeration that defines whether the MCMMetaData
applied to this MCMEntity enables it to be used or not.

getMCMEntityValidEndTime :
TimeAndDate[1..1]

This operation returns the date and time at which this
Entity is no longer valid and hence, not able to be
used. It returns a datatype of type TimeAndDate.
[D27] This attribute SHOULD have a complete and

valid time and/or date.
[O4] The implementation MAY ensure that the fields

in this data type are set to an appropriate default
value.

setMCMEntityValidEndTime(
in endTime : TimeAndDate[1..1])

This operation sets the current value of the date and
time at which this Entity is no longer valid and able to
be used. It takes a single input parameter, which is of
type TimeAndDate; this is used to set the
mcmEntityValidityEndTime to a new value.
[D28] This attribute SHOULD have a complete and

valid time and/or date.

getMCMEntityValidStartTime :
TimeAndDate[1..1]

This operation sets the current value of the date and
time at which this Entity is valid and able to be used. It
takes a single input parameter, which is of type
TimeAndDate; this is used to set the
mcmEntityValidityStartTime to a new value.
[D29] This attribute SHOULD have a complete and

valid time and/or date.
[O5] The implementation MAY ensure that the fields

in this data type are set to an appropriate default
value.

setMCMEntityValidStartTime(
in startTime :
TimeAndDate[1..1])

This operation sets the current value of the date and
time at which this Entity is first valid and able to be
used. It takes a single input parameter, which is of
type TimeAndDate; this is used to set the
mcmEntityValidityEndTime to a new value.
[D30] This attribute SHOULD have a complete and

valid time and/or date.

Table 8. Operations of the MCMEntityHasMCMMetaDataDetail Association Class

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 36

7.6 MCMUnManagedEntity Class Hierarchy

The MCMUnManagedEntity class has two subclasses, as shown in Figure 7.

Figure 7. MCMUnManagedEntity Subclasses

The purpose of the MCMUnManagedEntity hierarchy is to model the major different types of
MCMEntities that cannot be intrinsically managed, yet are of interest to the managed environment.
Note: in the MCM, any purely physical object is defined as unmanageable. Examples include
geographic areas, building, Racks, Chassis, and other purely physical Entities. Management
capabilities are provided by the logical objects that are attached to a physical object.
MCMUnMangedEntity objects are important to the managed environment because they provide
context (e.g., where a customer premise equipment is located) and a point of reference (e.g., ensure
that cell coverage covers this geographic area).

Table 9 defines the purpose of each of the subclasses of this hierarchy, and aligns them to MEF 55
[1].

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 37

Name of Class Function Relation to MEF 55

MCMUnManagedEntity

Represents Entities that are
important to the managed
environment that have no
inherent ability to digitally
communicate and be managed.

Not mentioned, but clearly
needed for Inventory, Order,
and other functions

MCMLocation

Represents points or areas that
contain physical objects that are
important to the managed
environment.

Some types of locations
(e.g., Sites) are mentioned,
but needs a more general
model.

MCMLocationAtomic A subclass of MCMLocation that
represents stand-alone Locations.

Not mentioned, but clearly
needed. Examples include a
stand-alone structure or
area.

MCMLocationComposite
A subclass of MCMLocation that
represents a set of Locations that
form a tree-like hierarchy.

Not mentioned, but clearly
needed. Examples include
nested Locations (e.g., a
rack within a wiring closet
within a floor within a
building«).

MCMPhysicalEntity

Represents physical Entities that
are important to the managed
environment that cannot be
managed electronically.

Examples include Rack,
Chassis, Slot, Port, Card,
Cable Duct, Shelf.

Table 9. Functions of the MCMUnManagedEntity Class and its Subclasses

7.6.1 MCMUnManagedEntity Class Definition

This is an abstract class, and specializes MCMEntity. It represents MCMEntities that are important
to the managed environment, but which have no inherent ability to digitally communicate with
other MCMEntities. Hence, they cannot be managed by digital mechanisms.

The current version of this CfCB defines two main subclasses of MCMUnManagedEntity, called
MCMLocation and MCMPhysicalEntity. They are described further in sections 7.6.2 and 7.6.6
below.

This class defines a single attribute, which is defined in Table 10.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 38

Attribute Name Mandatory? Description

mcmIsToponym[0..1] NO

This is a Boolean attribute. If the value of this
attribute is TRUE, then this MCMUnManagedEntity
is a toponym (i.e., a name of a place). Examples
include “CustomerSiteLocation͟ and
“ArchivalFacility͟. The value of the toponym MAY be
contained in the mcmCommonName attribute, or in
a custom attribute added to this class.

Table 10. Attributes of the MCMUnManagedEntity Class

Table 11 defines the operations for the MCMUnManagedEntity Class.

Operation Name Description

getMCMIsToponym : Boolean[1..1]

This operation returns the value of the mcmIsToponym
attribute. If the value of this attribute is TRUE, then this
MCMUnManagedEntity is a toponym (i.e., a name of a
placeͿ. Examples include “CustomerSiteLocation͟ and
“ArchivalFacility͟.

setMCMIsToponym(
in isAToponym : Boolean[1..1])

This operation sets the current value of the
mcmIsToponym attribute. It contains a single input
parameter, of type Boolean. If the value of this attribute
is TRUE, then this MCMUnManagedEntity is a toponym
(i.e., a name of a place). Examples include
“CustomerSiteLocation͟ and “ArchivalFacility͟.

Table 11. Operations of the MCMUnManagedEntity Class

At this time, no relationships are defined for the MCMUnManagedEntity class. It does participate
in one relationship, called MCMMgdEntityRefersToMCMUnManagedEntity; see section 7.9.1.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 39

7.6.2 MCMLocation Class Design

This section provides background information that describes the design of the MCMLocation class
hierarchy. Location design can be very complex, as multiple different factors (e.g., local
conventions describing geographic areas, the coordinate system used, and internationalization
factors) must be considered. The current MCM design provides a simplified approach that can
include these and other factors later.

7.6.2.1 Requirements

The design of the MCMLocation class hierarchy meets the following requirements:

[O6] Any physical entity MAY have an associated physical location; this is met by
defining an aggregation, called MCMPhyEntityHasMCMLocation, which is
shown in Figure 7.

[O7] Any managed entity MAY have an associated physical location; this is met by
defining an association, called MCMMgdEntityRefersToMCMUnManaged-
Entity, which is shown Figure 7.

[O8] Any managed entity MAY have an associated physical location; this is met by
defining an association, called MCMMgdEntityRefersToMCMUnManaged-
Entity, which is shown in Figure 7.

[O9] Locations MAY be defined as stand-alone or hierarchical structures (e.g., a
single location, such as a postal address, or the location of a room on a floor in
a building at a site); this is met by using the composite pattern to define atomic
and composite locations (i.e., MCMLocationAtomic and
MCMLocationComposite ± see sections 7.6.4 and 7.6.5, respectively).

[R20] Location data MUST be specified as either a geocode or a set of points that
bound an area (e.g., a polygon).

[D31] Geocode data SHOULD be provided in text.
[D32] Geocode data SHOULD be defined as either relative or absolute.

[R21] Relative geocodes are textual descriptions of a location that, by itself, cannot
provide an exact location. A relative geocode MUST be specified using one or
more absolute geocodes as a reference. For e[ample, ³The nearest building
northwest of building A3´ is a relative geocode that uses the location of building
A3 as its reference. In contrast, absolute geocodes are textual descriptions of a
location that, by itself, can provide an exact location. For example, a USPS ZIP
code (or even a USPS ZIP+4 code) is considered an absolute geocode. However,
it is thought of as a polygon. Different geocoding systems use different
computation mechanisms (e.g., a centroid) to define the ³center´ of such an area.

[O10] There is a surprising amount of variability in expressing an address. The
geocoding process MAY use additional mechanisms, such as address

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 40

normalization, to reduce this variability. Some geocoders also provide a degree
of precision or confidence in their result.

7.6.2.2 Design

One approach to enabling a location to reference another location is to define an attribute for
referencing the name of the class that it refers to. This is a poor choice for at least two reasons.
First, a location is a Class, and hence, using an attribute to refer to the name of a Class is better
accomplished by using an association. Second, what if there are multiple references (e.g., a street
address might not correspond to a known street address in the geocoding database, so it is common
practice to use two addresses and interpolate).

Given that we need an association, the next decision is, between which objects? This depends on
how location is represented. For geocodes, the typical practice is to provide a set of input data, and
use a geocode service to turn those data into a geocode. This is complicated by the fact that the
actual location (e.g., a postal address, or even a land parcel) is owned by a different administrative
authority (e.g., the government). Hence, in this version of the MCM, a geocode is modeled as a
subclass of InformationResource (see section 7.11). Since an aggregation already exists between
MCMEntity and MCMInformationResource (see section 7.1.3), all that is needed is to define a
new subclass of MCMInformationResource, called MCMGeocode; this is shown in Figure 8.

Figure 8. Representing Geocodes in MCM

Note that any subclass of MCMUnManagedEntity may have any of the three subclasses of
MCMInformationResource; the particular set of MCMInformationResource objects used may be
restricted by the MCMEntityHasMCMInfoResourceDetail association class.

Figure 9 shows both the MCMLocation and MCMPhysicalEntity class hierarchies and their
relevant relationships from the previous discussions.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 41

Figure 9. MCMLocation and MCMPhysicalEntity Hierarchies

7.6.3 MCMLocation Class Definition

This is an abstract class, and specializes MCMUnManagedEntity. It represents a point or area that
an Entity may occupy. An MCMLocation can be one of two things: (1) a unique estimated or
actual geolocation, or (2) the coordinates of an enclosing container (e.g., a polyhedron) that defines
the perimeter of the location. In either case, MCMGeospatialMetaData can be used to provide
additional descriptive and/or prescriptive data as required (e.g., building colors and entrance
instructions for different times, respectively). It has two subclasses, MCMLocationAtomic and
MCMLocationComposite, which are described in Sections 7.6.4 and 7.6.5, respectively.

Metadata information is a key part of any geolocation. Several standards exist on defining
geospatial metadata information. Hence, the MCM provides a subclass of MCMMetaData, called
MCMGeoSpatialMetaData, to represent such information. Note that an explicit relationship
between MCMLocation and MCMMetaData is not required, since MCMLocation is a subclass of
MCMEntity, and MCMEntityHasMCMMetaData already exists to aggregate MCMMetaData to
MCMEntities.

Another example of metadata is to provide generic information, such as information that
categori]es the business role that a particular MCMLocation pla\s (e.g., ³Customer Premise´,
³UNI Site´, or ³Billing Address´). This is implemented using the MCMEntityHasMCMMetaData
aggregation (note that this aggregation is inherited from MCMEntity). Another use of this

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 42

approach is to define information describing or prescribing characteristics and behavior of the
location. For example, metadata could be used to provide off-hour entry instructions to a building.

Note that [13] defines four different types of address formatting options (i.e., fielded address,
formatted address, address reference, and geographic point). Since each of these options are really
complex data structures, this is implemented in the MCM using metadata to represent each of these
addresses. Once again, the MCMEntityHasMCMMetaData is used to attach the appropriate
subclasses of MCMMetaData to the appropriate subclasses of MCMLocation. Table 12 defines
the attributes of the MCMLocation class.

Attribute Name Mandatory? Description

mcmIsAbsoluteData :
Boolean[1..1] YES

This is a Boolean attribute. If the value of this
attribute is TRUE, then the mcmLocationData
class attribute contains absolute input data.
Otherwise, the mcmLocationData class attribute
contains relative data. Note that relative input
defines a relative geocode, which is dependent
on (and geographically relative to) other
geocode locations.

mcmIsEstimatedLocation
: Boolean[0..1] NO

This is a Boolean attribute. If the value of this
attribute is TRUE, then this location is an
estimated value. Otherwise, this location is a
precise value.

mcmIsFixedBoundary :
Boolean[0..1] NO

This is a Boolean attribute. If the value of this
attribute is TRUE, then this MCMlLocation has
well-defined boundaries. Otherwise, one or
more boundaries of this MCMLocation are
ambiguous and/or can change.

mcmIsGeocodeLocation :
Boolean[1..1] YES

This is a Boolean attribute. If the value of this
attribute is TRUE, then this location is an actual
or estimated geocode. Otherwise, this location
is described by an enclosing container (e.g., a
polyhedron). In both cases, the location (i.e.,
the geocode or the points defining the
polyhedron) are defined by the
mcmLocationDataList class attribute.

mcmLocationDataList :
String[1..*] YES

This is an array of string attributes. Each string
in this attribute contains input data to
determine the location. If the
mcmIsGeocodeLocation class attribute is TRUE,
then the data contained in this attribute is the
input to a geocoding process. This may consist
of one or more attributes. Otherwise, the data

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 43

contained in this attribute contain the
coordinates of an enclosing container of this
MCMLocation; this is typically defined as one
attribute per coordinate.
[D33] If the value of the mcmLocationDataList

attribute is not known, then an empty
string SHOULD be returned.

mcmIsPlannedLocation :
Boolean[0..1] NO

This is an optional Boolean attribute. If the
value of this attribute is TRUE, then this object
represents a location that is in the planning
stages, and does not yet physically exist.
Otherwise, this location does currently exist.

Table 12. Attributes of the MCMLocation Class

Table 13 defines the operations for the MCMLocation Class.

Operation Name Description

getMCMIsAbsoluteData() :
Boolean[1..1]

This operation returns the value of the mcmIsAbsoluteData
attribute. If the value of this attribute is TRUE, then this
MCMLocation represents absolute location data. Otherwise, this
MCMLocation object represents relative location data (i.e., the
location is relative to another location).

setMCMIsAbsoluteData(in
isAbsData : Boolean[1..1])

This operation sets the current value of the mcmIsAbsoluteData
attribute. This operation takes a single input parameter, of type
Boolean, which is used to change the value of the
mcmIsAbsoluteData class attribute. A value of TRUE means that
this MCMLocation object is defined using absolute data;
otherwise, this MCMLocation object is defined relative to
another MCMLocation object.

getMCMIsEstimatedLocation()
: Boolean[1..1]

This operation returns the value of the mcmIsEstimatedLocation
attribute. If the value of this attribute is TRUE, then this
MCMLocation represents an estimated location. Otherwise, this
MCMLocation object represents a precise location.

setMCMIsEstimatedLocation(
in isEstimate : Boolean[1..1])

This operation sets the current value of the
mcmIsEstimatedLocation attribute. This operation takes a single
input parameter, of type Boolean, which is used to change the
value of the mcmIsEstimatedLocation class attribute. A value of
TRUE means that it is an estimated location, while a value of
FALSE means that it is a precise location.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 44

getMCMIsFixedBoundary() :
Boolean[1..1]

This operation returns the value of the mcmIsFixedBoundary
attribute. If the value of this attribute is TRUE, then this
MCMLocation has a fixed boundary. Otherwise, this
MCMLocation object has one or more boundaries that can
change.

setMCMIsFixedBoundary(
in isFixed : Boolean[1..1])

This operation sets the current value of the
mcmIsFixedBoundary attribute. This operation takes a single
input parameter, of type Boolean, which is used to change the
value of the
mcmIsFixedBoundary class attribute. If the input variable is
TRUE, then this MCMLocation has a fixed boundary; otherwise,
it contains one or more boundaries that can change.

getMCMIsGeocodeLocation() :
Boolean[1..1]

This operation returns the value of the mcmIsGeocodeLocation
attribute. If the value of this attribute is TRUE, then this
MCMLocation represents an actual or estimated geocode (which
is defined by the mcmLocationDataList class attribute).
Otherwise, this MCMLocation object represents a location that
is described by an enclosing contaiiner (e.g., a polyhedron).

setMCMIsGeocodeLocation(
in isGeocode : Boolean[1..1])

This operation sets the current value of the
mcmIsGeocodeLocation attribute. This operation takes a single
input parameter, of type Boolean, which is used to change the
value of the mcmIsGeocodeLocation class attribute. If the input
variable is TRUE, then this MCMLocation is defined by a
geocode; otherwise, it is defined by a polyhedron.

getMCMIsPlannedLocation() :
Boolean[1..1]

This operation returns the value of the mcmIsPlannedLocation
attribute. If the value of this attribute is TRUE, then this
MCMLocation represents a location that is in the planning
stages, and does not yet physically exist. Otherwise, this
MCMLocation object does currently exist.

setMCMIsPlannedLocation (in
isPlanned : Boolean[1..1])

This operation sets the current value of the
mcmIsPlannedLocation attribute. This operation takes a single
input parameter, of type Boolean, which is used to change the
value of the mcmIsPlannedLocation class attribute. A value of
TRUE means that this MCMLocation object is planned, but does
not currently exist; otherwise, this MCMLocation object already
exists.

getMCMLocationDataList() :
String[1..*]

This operation returns the value of the mcmLocationDataList
attribute. The return value is an array of Strings that collectively
define either the geocode or each point in a surrounding
polyhedron that defines this MCMLocation.
[D34] If this object does not have a value for the

mcmLocationDataList attribute, then a NULL string
SHOULD be returned by the
getMCMLocationDataList operation.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 45

setMCMLocationDataList(
in locationDataList :
String[1..*])

This operation sets the current value of the mcmLocationData-
List attribute. This operation takes a single input parameter, of
type String[1..*], which is used to change the value of the
mcmLocationDataList class attribute. The mcmLocationDataList
class attribute defines the data describing the boundary of the
MCMLocation either as a geocode or as a polyhedron.

getMCMLocationParent() :
MCMLocationComposite[1..1]

This operation returns the parent of this MCMLocation object.

[R22] The parent MUST be of type
MCMLocationComposite.

[D35] If this MCMLocation object has no parent, then a
NULL MCMLocationObject SHOULD be
returned.

setMCMLocationParent(
in newParent :
MCMLocationComposite[1..1])

This operation defines the parent of this MCMLocation object.

[R23] If this MCMLocation object already has a parent,
then an exception MUST be raised.

[R24] This MCMLocation object MUST NOT have more
than one parent.

getMCMPhyEntityListAtLocati
on() : MCMPhysicalEntity[1..*]

This operation returns the set of MCMPhysicalEntity objects
that are at this particular MCMLocation. This is done by
following each instance of the MCMPhyEntityHasMCMLocation
association, and taking into effect any semantics defined by the
MCMPhyEntityHasMCMLocationDetail association class. This
operation takes no input parameters.
[D36] If no MCMPhysicalEntity objects are associated

with this particular MCMLocation, then a NULL
MCMPhysicalEntity object SHOULD be returned.

setMCMPhyEntityListAtLocati
on (in phyEntityList :
MCMPhysicalEntity[1..*])

This operation defines a set of MCMPhysicalEntity objects that
are associated with this particular MCMLocation. This operation
takes a single input parameter, called phyEntityList, which is an
array of one or more MCMPhysicalEntity objects. This operation
creates a set of aggregations between this particular
MCMLocation object and the set of MCMPhysicalEntity objects
identified in the input parameter This is done by instantiating an
instance of the MCMPhyEntityHasMCMLocation association for
each MCMPhysicalEntity in the input parameter, and then
realizing that association with an instance of the
MCMPhyEntityHas-MCMLocationDetail association class. Note
that this operation first deletes any existing associated
MCMPhysicalEntity objects (and their aggregations and
association classes), and then instantiates a new set of
MCMPhysicalEntity objects; in doing so, each
MCMPhysicalEntity object is attached to this particular
MCMLocation object by first, creating an instance of the

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 46

MCMPhyEntityHasMCMLocation aggregation, and second,
realizing that aggregation instance as an association class.
[D37] When the setMCMPhyEntityListAtLocation

operation is executed, each created aggregation
SHOULD have an association class (i.e., an instance
of the MCMPhyEntityHasMCMLocationDetail
class).

setMCMPhyEntityPartialList-
AtLocation (in
phyEntityPartialList:
MCMPhysicalElement[1..*])

This operation defines a set of one or more MCMPhysicalEntity
objects that should be associated with this particular
MCMLocation object WITHOUT affecting any other existing
contained MCMLocation objects or the objects that are
contained in them. This operation takes a single input
parameter, called phyEntityPartialList, which is an array of one
or more MCMPhysicalEntity objects. This operation creates a set
of aggregations between this particular MCMLocation object
and the set of MCMPhysicalEntity objects identified in the input
parameter.
[D38] When the setMCMPhyEntityPartialListAtLocation

operation is executed, each created aggregation
SHOULD have an association class (i.e., an instance
of the MCMPhyEntityHasMCMLocationDetail
class).

delMCMPhyEntityAtLocation()

This operation deletes ALL instances of MCMPhysicalEntity
objects that are related to this particular MCMLocation object.
This operation first removes the association class, and second,
removes the association, between this MCMLocation object and
each MCMPhysicalEntity object that is attached to this
MCMLocation object. This operation has no input parameters.

delMCMPhyEntityPartialList-
AtLocation(in phyEntityList :
MCMPhysicalEntity[1..*])

This operation deletes the set of instances of
MCMPhysicalEntity objects that are specified in the
phyEntityList parameter that are related to this particular
MCMLocation object. This operation first removes the
association class, and second, removes the association, between
this MCMLocation object and each MCMPhysicalEntity object
that is specified in the phyEntityList (that is attached to this
MCMLocation) parameter.

[R25] All other associations between this particular
MCMLocation object and other
MCMPhysicalEntity objects that are not specified in
the phyEntityList parameter MUST NOT be
affected.

Table 13. Operations of the MCMLocation Class

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 47

At this time, no relationships are defined for the MCMLocation class, although it participates in
two relationships, MCMHasLocation and MCMPhyEntityHasMCMLocation (see sections 7.6.5
and 7.6.6, respectively).

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 48

7.6.4 MCMLocationAtomic Class Definition

This is an abstract class, and specializes MCMLocation. This class represents stand-alone
MCMLocation objects. In addition, each MCMLocationAtomic has characteristics and behavior
that are externally visible. Examples include a single building that is not related to other buildings,
or the location of a cable duct (remember, an MCMLocation can be a polyhedron).

[R26] This class MUST NOT contain another MCMLocation object.

At this time, no attributes are defined for the MCMLocationAtomic class.

 At this time, no operations are defined for the MCMLocationAtomic class.

At this time, no relationships are defined for the MCMLocationAtomic class.

7.6.5 MCMLocationComposite Class Definition

This is an abstract class, and specializes MCMLocation. This class represents a set of related
MCMLocation objects that are organized into a tree structure. Its primary use is to collect other
types of MCMLocation objects.

[O11] Each MCMLocationComposite object MAY contain zero or more
MCMLocationAtomic and/or zero or more MCMLocationComposite objects.

For example, a Building may contain floors, floors may contain rooms, rooms may contain wiring
closets, and wiring closets may contain other physical entities (e.g., racks and chassis) that in turn
contain equipment (e.g., Computers, Routers, and Switches) that are of interest to the managed
environment. In this example, each of these objects may have a set of MCMLocation objects
associated with them. For example, a room may contain other types of rooms, and each may have
its own specific MCMLocation object associated with it.

[O12] Each of these physical entities MAY have an associated location, which is
defined using the MCMPhyEntityHasMCMLocation aggregation discussed in
section 7.6.6.

At this time, no attributes are defined for the MCMLocationComposite class. Most attributes will
likely be realized using relationships and/or operations. For example, a query to an instance of the
MCMLocationComposite class to provide its set of contained MCMLocations (e.g., the floor(s) of
a building in a site) will be done by using class operations; the MCMLocationComposite instance
will query each of its contained MCMLocations (which will in turn call their operations to acquire
their MCMLocations), aggregate and organize the information, and provide that information in its
operation response.

Table 14 defines the operations for the MCMLocationComposite class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 49

Operation Name Description

getMCMLocationChildList() :
MCMLocation[1..*]

This operation returns the set of all MCMLocation
objects that are contained in this specific
MCMLocationComposite object. There are no input
parameters to this operation. This operation
returns a list of one or more MCMLocation objects
(i.e., the list is made up of MCMLocationAtomic
and/or MCMLocationComposite objects).
[D39] If no MCMLocation objects are found, then

this operation SHOULD return a NULL
MCMLocation object).

setMCMLocationChildList(
in childObjectList :
MCMLocation[1..*])

This operation defines a set of MCMLocation
objects that will be contained by this particular
MCMLocationComposite object. This operation
takes a single input parameter, called
childObjectList, which is an array of one or more
MCMLocation objects (i.e., one or more
MCMLocationAtomic and/or
MCMLocationComposite objects). This has the
effect of creating an instance of the
MCMHasLocation aggregation between each
MCMLocation object in the childObjectList and this
particular MCMLocationComposite object. Note
that this operation first deletes any existing
contained MCMLocation objects (and their
aggregations and association classes), and then
instantiates a new set of MCMLocation objects; in
doing so, each MCMLocation object is contained
within this particular MCMLocationComposite
object by first, creating an instance of the
MCMHasLocation aggregation, and second,
realizing that aggregation instance as an association
class.
[D40] When this operation is executed, each

created aggregation SHOULD have an
association class (i.e., an instance of the
MCMHasMCMLocationDetail class).

setMCMLocationPartialChildList(in
childObjectList :
MCMLocation[1..*])

This operation defines a set of one or more
MCMLocation objects that should be contained
within this particular MCMLocationComposite
object WITHOUT affecting any other existing
contained MCMLocation objects or the objects that
are contained in them. This operation takes a single

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 50

input parameter, called childObjectList, which is an
array of one or more MCMLocation objects. This
has the effect of creating a set of aggregations
between this particular MCMLocationComposite
object and each of the MCMLocation objects
identified in the childObjectList.
[D41] When this operation is executed, each

created aggregation SHOULD have an
association class (i.e., an instance of the
MCMHasMCMLocationDetail class).

delMCMLocationChildList()

This operation deletes ALL contained MCMLocation
objects of this particular MCMLocationComposite
object. This has the effect of first, removing the
association class, and second, removing the
aggregation, between this MCMLocationComposite
object and each MCMLocation object that is
contained in this MCMLocationComposite object.
This operation has no input parameters.

delMCMLocationPartialChildList (
in childObjectList :
MCMLocation[1..*])

This operation deletes a set of MCMLocation
objects from this particular
MCMLocationComposite object WITHOUT affecting
any other existing contained MCMLocation objects
or the objects that are contained in them. This
operation takes a single input parameter, called
childLocationList, which is an array of one or more
MCMLocation objects. This has the effect of first,
removing the association class and second,
removing the aggregation, between each
MCMLocation object specified in the input
parameter and this MCMLocationComposite object.

[R27] All other aggregations between this
MCMLocationComposite and other
MCMLocation objects that are not identified
in the input parameter MUST NOT be
affected.

Table 14. Operations for the MCMLocationComposite Class

The MCMLocationComposite class defines a single aggregation, called MCMHasLocation. This
aggregation is used to define the set of MCMLocation objects that are contained within this
particular MCMLocationComposite object. Its multiplicity is defined to be 0..1 ± 0..*. This means
that this aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this aggregation is
instantiated (e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more MCMLocation objects can
be associated with this particular MCMLocationComposite object. Note that the cardinality on the

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 51

part side (MCMLocation) is 0..*; this enables an MCMLocationComposite object to be defined
without having to define an MCMLocation object for it to aggregate.

The semantics of the MCMHasLocation aggregation is realized using an association class, called
MCMHasLocationDetail. This enables the semantics of the MCMHasLocation aggregation to be
realized using the attributes, operations, and relationships of the MCMHasLocationDetail
association class. The Policy Pattern may be used to control which specific MCMLocation objects
are contained within a given MCMLocationComposite object for a given context. See Figure 3 for
an exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class
that is the superclass of imperative, declarative, and intent policy rules.

The MCMLocation class also participates in a second association, called
MCMPhyEntityHasMCMLocation. Please see section 7.6.6.

7.6.6 MCMPhysicalEntity Class Definition

This is an abstract class, and specializes MCMUnManagedEntity. It represents MCMEntities that
are important to the managed environment that have a physical form. They cannot be managed
electronically. Examples include Rack, Chassis, CableDuct, and Card. The composite pattern is
applied to MCMPhysicalEntity to enable stand-alone as well as hierarchies of
MCMPhysicalEntities to be represented. This is described in sections 7.6.7 and 7.6.8, respectively.

Note that some attributes, such as the revision number of a hardware component, are defined by
MCMMetada classes. This differs from other implementations, which typically define such
attributes in the equivalent of this class (note that other implementations typically do not have a
formal metadata class hierarchy, and hence, have no alternative). This was done in the MCM in
order to accommodate more use cases and provide flexibility in defining MCMPhysicalEntities.

Different types of physical objects that themselves cannot be digitially or electronically managed
may be subclassed from either MCMPhysicalEntityAtomic or from
MCMPhysicalEntityComposite. For example, a Building may contain floors, floors may contain
rooms, rooms may contain wiring closets, and wiring closets may contain other physical entities
(e.g., racks and chassis) that in turn contain equipment (e.g., Computers, Routers, and Switches)
that are of interest to the managed environment. In this example:

x A building is a type of MCMPhysicalEntityComposite, since its purpose is to contain
other MCMEntities.

x A floor is a type of MCMPh\sicalEntit\Composite; while it does not ³contain´ an\thing,
other ph\sical entities ma\ be put ³on´ a floor (which \ields the same result).

x A room is a type of MCMPhysicalEntityComposite, since the purpose of the room is to
contain things.

x Similarly, a Wiring Closet is a type of Room that contains physical equipment and
electrical connections; hence, it is also an MCMPhysicalEntityComposite.

x A Rack is a standardized enclosure for mounting multiple electronic equipment modules;
hence, a Rack is an MCMPhysicalEntityComposite.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 52

x A Chassis is a standardized enclosure that contains the components that make up a type
of equipment (e.g., a computer or router); hence, a Chassis is an
MCMPhysicalEntityComposite.

x Equipment frames, such as a Computer or Router or Switch, are all examples of an
MCMPhysicalEntityComposite, since they contain other physical components.

x Physical port is an example of an MCMPhysicalEntityAtomic.

In the above examples, objects modeled using MCMPhysicalEntityAtomic may instead use an
MCMPhysicalEntityComposite (except for objects that are not defined to contain other objects,
such as Physical Port) as long as, for the purposes of the managing the environment, that object
does not need to expose containing objects. For example, a Chip is typically modeled as a type of
MCMPhysicalEntityAtomic since the components contained in the Chip (e.g., transistors) are not
significant to the managed environment.

Table 15 defines the attributes of the MCMPhysicalEntity class.

Attribute Name Mandatory? Description

mcmAssetID :
String[0..1] NO

This is a string attribute. It contains a user-assigned
asset tracking identifier for the component.

[R28] The mcmAssetID attribute MUST NOT be
used as an objectID, since one is inherited
from MCMRootEntity.

[D42] If an mcmAssetID attribute is not assigned,
then the value of this attribute SHOULD be
set to an empty string.

mcmManufactureDate
: TimeAndDate[1..1] YES

This is a TimeAndDate attribute, and contains the
date and time of the manufacturing of this object.
[D43] This attribute SHOULD have a complete

and valid time and/or date.
[O13] The implementation MAY ensure that the

fields in this data type are set to an
appropriate default value.

mcmManufacturer :
String[0..1] NO

This is a string attribute. It contains the name of
the manufacturer of this object.
[D44] If the Manufacturer is not known, then the

value of the mcmManufacturer attribute
SHOULD be set to an empty string.

mcmSerialNumber :
String[1..1] YES

This is a string attribute. It contains the serial
number of this object.
[D45] If an mcmSerialNumber attribute is not

assigned, then the value of this attribute
SHOULD be set to an empty string.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 53

Table 15. Attributes of the MCMPhysicalEntity Class

Table 16 defines the following operations for the MCMPhysicalEntity class.

Operation Name Description

getMCMAssetID() :
String[1..1]

This operation returns the mcmAssetID attribute of this
MCMPhysicalEntity object. There are no input parameters to
this operation.
[D46] If an mcmAssetID attribute is not assigned, then the

returned value of the getMCMAssetID operation
SHOULD be set to an empty string.

setMCMAssetID(
in newAssetID :
String[1..1])

This operation defines a new mcmAssetID attribute for this
MCMPhysicalEntity object. A single input parameter, called
newAssetID (of type String), is defined.
[D47] If an mcmAssetID attribute is not known, then the value

of this attribute SHOULD be set to an empty string.

getMCMManufactureDat
e() : TimeAndDate[1..1]

This operation returns the mcmManufactureDate attribute, in
the form of a TimeAndDate datatype, of this
MCMPhysicalEntity object. There are no input parameters to
this operation.
[D48] This attribute SHOULD have a complete and valid time

and/or date.
[O14] The implementation MAY ensure that the fields in this

data type are set to an appropriate default value.

setMCMManufactureDat
e(in
manufacturerDate :
TimeAndDate[1..1])

This operation defines a new mcmManufactureDate attribute,
in the form of a TimeAndDate datatype, for this
MCMPhysicalEntity object. A single input parameter, called
manufacturerDate (of type TimeAndDate) is defined for this
operation.
[D49] This attribute SHOULD have a complete and valid time

and/or date.

getMCMManufacturer() :
String[1..1]

This operation returns the mcmManufacturer attribute of this
MCMPhysicalEntity object. There are no input parameters to
this operation.
[D50] If the mcmManufacturer is not known or does not exist,

then an empty string SHOULD be returned.

setMCMManufacturer(in
manufacturerName :
String[1..1])

This operation defines a new mcmManufacturer attribute for
this MCMPhysicalEntity object. A single string attribute,
named manufacturerName, is defined.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 54

[D51] If the mcmManufacturer is not known or does not exist,
then the value of this attribute SHOULD be set to an
empty string.

getMCMSerialNumber()
: String[1..1]

This operation returns the mcmSerialNumber attribute of this
MCMPhysicalEntity object. There are no input parameters to
this operation.
[D52] If the serial number is not known or does not exist, then

an empty string SHOULD be returned.

setMCMSerialNumber(in
newSerialNumber :
String[1..1])

This operation defines a new mcmSerialNumber attribute for
this MCMPhysicalEntity object. A single string attribute,
named newSerialNumber (of type String), is defined.
[D53] If the serial number is not known, then the value of this

attribute SHOULD be set to an empty string.

getMCMPhysicalEntityPa
rent() :
MCMPhysicalEntityCom
posite[1..1]

This operation returns the parent of this MCMPhysicalEntity
object.
[D54] If this MCMPhysicalEntity object has no parent, then a

NULL MCMPhysicalEntityComposite SHOULD be
returned.

setMCMPhysicalEntityPa
rent(in newParent :
MCMPhysicalEntityCom
posite[1..1])

This operation defines the parent of this MCMPhysicalEntity
object.
[D55] If this MCMPhysicalEntity object already has a parent,

then an exception SHOULD be raised.

[R29] This MCMPhysicalEntity object MUST NOT have
more than one parent.

getMCMLocationListFor
PhyEntity() :
MCMLocation[1..*]

This operation returns the set of MCMLocation objects that
are associated with this particular MCMPhysicalEntity. This is
done by following each instance of the
MCMPhyEntityHasMCMLocation association, and taking into
effect any semantics defined by the
MCMPhyEntityHasMCMLocationDetail association class. This
operation takes no input parameters.
[D56] If no MCMLocation objects are associated with this

particular MCMPhysicalEntity, then a NULL
MCMLocation object SHOULD be returned.

setMCMLocationListFor
PhyEntity(in locationList
:
MCMLocation[1..*])

This operation defines a set of MCMLocation objects that are
associated with this particular MCMPhysicalEntity. This
operation takes a single input parameter, called locationList,
which contains an array of one or more MCMLocation objects.
This is done by instantiating an instance of the
MCMPhyEntityHasMCMLocation association for each
MCMLocation object in the input parameter, and then

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 55

realizing that association with an instance of the
MCMPhyEntityHasMCMLocationDetail association class. Note
that this operation first deletes any existing associated
MCMLocation objects (and their aggregations and association
classes), and then instantiates a new set of MCMPhysicalEntity
objects; in doing so, each MCMPhysicalEntity object is
attached to this particular MCMLocation object by first,
creating an instance of the MCMPhyEntityHasMCMLocation
aggregation, and second, realizing that aggregation instance as
an association class.
[D57] Each created aggregation SHOULD have an association

class (i.e., an instance of the
MCMPhyEntityHasMCMLocationDetail class).

setMCMLocationPartialL
istForPhyEntity(in
locPartialList :
MCMLocation[1..*])

This operation defines a set of one or more MCMLocation
objects that should be associated with this particular
MCMPhysicalEntity object WITHOUT affecting any other
existing contained MCMLocation objects or the objects that
are contained in them. This operation takes a single input
parameter, called locPartialList, which is an array of one or
more MCMLocation objects. This operation creates a set of
aggregations between this particular MCMPhysicalEntity
object and the set of MCMLocation objects identified in the
input parameter.
[D58] Each created aggregation SHOULD have an association

class (i.e., an instance of the
MCMPhyEntityHasMCMLocationDetail class).

delMCMLocationForPhy
Entity()

This operation deletes ALL instances of MCMLocation objects
that are related to this particular MCMPhysicalEntity object.
This operation first removes the association class, and second,
removes the association, between this MCMPhysicalEntity
object and each MCMLocation object that is attached to this
MCMLocation object. This operation has no input parameters.

delMCMLocationPartialL
istForPhyEntity (in
locationList :
MCMLocation[1..*])

This operation deletes the set of instances of MCMLocation
objects that are specified in the locationList parameter that
are related to this particular MCMPhysicalEntity object. This
operation first removes the association class, and second,
removes the association, between this MCMPhysicalEntity
object and each MCMLocation object that is specified in the
locationList parameter.

[R30] All other associations between this particular
MCMPhysicalEntity object and other MCMLocation
objects that are not specified in the locationList
parameter MUST NOT be affected.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 56

Table 16. Operations for the MCMPhysicalEntity Class

At this time, the MCMPhysicalEntity class defines a single association that defines zero or more
MCMLocations for a given MCMPhysicalEntity, called MCMPhyEntityHasMCMLocation. The
multiplicity of this association is defined as 0..1 ± 0..*. This means that this association is optional
(i.e., the ³0´ part of the 0..1 cardinalit\). If this association is instantiated (e.g., the ³1´ part of the
0..1 cardinality), then zero or more MCMLocation objects can be associated with this particular
MCMPhysicalEntity object. Note that the cardinality on the part side (MCMLocation) is 0..*; this
enables an MCMPhysicalEntity object to be defined without having to define an associated
MCMLocation object. The semantics of the MCMPhyEntityHasMCMLocation association is
realized using an association class, called MCMPhyEntityHasMCMLocationDetail. This controls
the set of which MCMLocation objects can be associated with this particular MCMPhysicalEntity
object.

The Policy Pattern may be used to control which specific MCMLocation objects are associated
with a given MCMPhysicalEntity object for a given context. See Figure 3 for an exemplary
illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the
superclass of imperative, declarative, and intent policy rules.

The MCMPhysicalEntity class also participates in a second aggregation, called
MCMHasPhysicalEntity; see section 7.6.8.

7.6.7 MCMPhysicalEntityAtomic Class Definition

This is an abstract class, and specializes MCMPhysicalEntity. Each MCMPhysicalEntityAtomic
has characteristics and behavior that are externally visible. Examples include a single building that
is not related to other buildings, or a cable duct. It is abstract because it is intended to be subclassed.

[R31] This class represents stand-alone MCMPhysicalEntity objects (i.e., they MUST
NOT contain another MCMPhysicalEntity object).

At this time, no attributes are defined for the MCMPhysicalEntityAtomic class.

At this time, no relationships are defined for the MCMPhysicalEntityAtomic class.

7.6.8 MCMPhysicalEntityComposite Class Definition

This is a concrete class, and specializes MCMPhysicalEntity. This class represents a set of related
MCMPhysicalEntity objects that are organized into a tree structure. Its primary use is to collect
other types of MCMPhysicalEntity objects (e.g., MCMPhysicalEntityAtomic and
MCMPhysicalEntityComposite).

[O15] Each MCMPhysicalEntityComposite object MAY contain zero or more
MCMPhysicalEntityAtomic and/or zero or more MCMPhysicalEntityAtomic
objects.

For example, a Building may contain floors, wiring closets, and other physical entities that are of
interest to the managed environment.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 57

At this time, no attributes are defined for the MCMPhysicalEntityComposite class. Most attributes
will likely be realized using relationships and/or operations. For example, a query to an instance
of the MCMPhysicalEntityComposite class to provide its set of contained MCMPhysicalEntity
objects (e.g., physical ports in one or more cards in one or more slots of a chassis) will be done by
using class operations; the MCMPhysicalEntityComposite instance will query each of its
contained MCMPhysicalEntity objects (which will in turn call their operations to acquire their
MCMPhysicalEntity details), aggregate and organize the information, and provide that
information in its operation response.

Table 17 defines the following operations for the MCMPhysicalEntityComposite class.

Operation Name Description

getMCMPhysicalEntityChildList() :
MCMPhysicalEntity[1..*]

This operation returns the set of all
MCMPhysicalEntity objects that are contained
in this specific MCMPhysicalEntityComposite
object. There are no input parameters to this
operation. This operation returns a list of zero
or more MCMPhysicalEntity objects (i.e., the
list is made up of MCMPhysicalEntityAtomic
and/or
MCMPhysicalEntityComposite objects).
[D59] If this MCMPhysicalEntityComposite

object has no children, then it
SHOULD return a NULL
MCMPhysicalEntity object.

setMCMPhysicalEntityChildList(in
childObjectList :
MCMPhysicalEntity[1..*])

This operation defines a set of
MCMPhysicalEntity objects that will be
contained by this particular
MCMPhysicalEntityComposite object. This
operation takes a single input parameter,
called childObjectList, which is an array of one
or more MCMPhysicalEntity objects (i.e., one
or more MCMPhysicalEntityAtomic and/or
MCMPhysicalEntityComposite objects). This
operation first creates an instance of the
MCMHasPhysicalEntity aggregation between
each MCMPhysicalEntity object in the child-
ObjectList and this particular
MCMPhysicalEntityComposite object. Note
that this operation first deletes any existing
contained MCMPhysicalEntity objects (and
their aggregations and association classes),
and then instantiates a new set of

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 58

MCMPhysicalEntity objects; in doing so, each
MCMPhysicalEntity object is contained within
this particular MCMPhysicalEntityComposite
object by first, creating an instance of the
MCMHasPhysicalEntity aggregation, and
second, realizing that aggregation instance as
an association class.
[D60] Each created aggregation SHOULD

have an association class (i.e., an
instance of the
MCMHasPhysicalEntityDetail
association class).

setMCMPhysicalEntityPartialChildList(in
childObjectList :
MCMPhysicalEntity[1..*])

This operation defines a set of one or more
MCMPhysicalEntity objects that should be
contained within this particular
MCMPhysicalEntityComposite object
WITHOUT affecting any other existing
contained MCMPhysicalEntity objects or the
objects that are contained in them. This
operation takes a single input parameter,
called childObjectList, which is an array of one
or more MCMPhysicalEntity objects. This
operation creates a set of aggregations
between this particular
MCMPhysicalEntityComposite object and
each of the MCMPhysicalEntity objects
identified in the childObjectList.
[D61] Each created aggregation SHOULD

have an association class (i.e., an
instance of the
MCMHasPhysicalEntityDetail class).

delMCMPhysicalEntityChildList()

This operation deletes ALL contained
MCMPhysicalEntity objects of this particular
MCMPhysicalEntityComposite object. This has
the effect of first, removing the association
class, and second, removing the aggregation,
between this MCMPhysicalEntityComposite
object and each MCMPhysicalEntity object
that is contained in this
MCMPhysicalEntityComposite object. This
operation has no input parameters.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 59

delMCMPhysicalEntityPartialChildList (
in childObjectList :
MCMPhysicalEntity[1..*])

This operation deletes a set of
MCMPhysicalEntity objects from this
particular MCMPhysicalEntityComposite
object. This operation takes a single input
parameter, called child-ObjectList, which is an
array of one or more MCMPhysicalEntity
objects. This has the effect of first, removing
the association class and second, removing
the aggregation, between each
MCMPhysicalEntity object specified in the
input parameter and this
MCMPhysicalEntityComposite object.

[R32] All other aggregations between this
MCMPhysicalEntityComposite and
other MCMPhysicalEntity objects that
are not identified in the input
parameter MUST NOT be affected.

Table 17. Operations of the MCMPhysicalEntityComposite Class

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 60

The MCMPhysicalEntityComposite class defines a single aggregation, called
MCMHasPhysicalEntity. This aggregation is used to define the set of MCMPhysicalEntity objects
that are contained within this particular MCMPhysicalEntityComposite object. Its multiplicity is
defined to be 0..1 ± 0..*. This means that this aggregation is optional (i.e., the ³0´ part of the 0..1
cardinalit\). If this aggregation is instantiated (e.g., the ³1´ part of the 0..1 cardinalit\), then]ero
or more MCMPhysicalEntity objects can be aggregated by this particular
MCMPhysicalEntityComposite object. Note that the cardinality on the part side
(MCMPhysicalEntity) is 0..*; this enables an MCMPhysicalEntityComposite object to be defined
without having to define an MCMPhysicalEntity object for it to aggregate.

The semantics of the MCMHasPhysicalEntity aggregation is realized using an association class,
called MCMHasPhysicalEntityDetail. This enables the semantics of the MCMHasPhysicalEntity
aggregation to be realized using the attributes, operations, and relationships of the
MCMHasPhysicalEntityDetail association class. The Policy Pattern may be used to control which
specific MCMPhysicalEntity objects are contained within a given MCMPhysicalEntityComposite
object for a given context. See Figure 3 for an exemplary illustration of the Policy Pattern. Note
that MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and
intent policy rules.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 61

7.7 MCMDomain Class Hierarchy

The MCMDomain class has a single subclass, as shown in Figure 10.

Figure 10. MCMDomain Subclasses

The purpose of the MCMDomain hierarchy is to model the major different types of Entities that
are inherently manageable using digital means, and which also are of interest to the managed
environment. Examples include interfaces of a network device, protocols, policy rules, and
behavior of an object. Table 18 defines the purpose of each of the subclasses of this hierarchy, and
aligns them to MEF 55 [1].

Name of Class Function Relation to MEF 55

MCMDomain

Defines a collection of MCMEntities that
share a common purpose. In addition, each
constituent MCMEntity in an MCMDomain
is both uniquely addressable and uniquely
identifiable within that MCMDomain

Models the generic
concept of an
administrative
domain.

MCMManagementDom
ain

An MCMManagementDomain is used to
contain MCMManagedEntities. It refines
the notion of an MCMDomain by adding
three important behavioral features: 1) it
defines a set of administrators that govern
the MCMManagedEntities that it contains;
2) it defines a set of applications that are
responsible for different governance
operations, such as monitoring,
configuration, and so forth; 3) it defines a
common set of management mechanisms,
such as policy rules, that are used to govern

This links the Policy
Driven Orchestration
work to MEF55.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 62

the behavior of MCMManagedEntities
contained in the MCMManagementDomain.

MCMMgmtDomain
Atomic

Represents MCMManagementDomains that
are modeled as a single, stand-alone,
manageable object.

The most common
type of
MCMManagementDo
main.

MCMMgmt
DomainComposite

Represents MCMManagementDomains that
are modeled as a hierarchy of manageable
objects. This produces three objects: the
Composite MCMManagementDomains, the
set of constituent component
MCMManagementDomains, and the
combination of these.

Accommodates
nested Orders and
Orders that form a
tree-like hierarchy.

Table 18. Functions of the MCMDomain Class and its Subclasses

7.7.1 MCMDomain Class Definitiion

This is an abstract class, and specializes MCMEntity. An MCMDomain is a collection of
MCMEntities that share a common purpose. In addition, each constituent MCMEntity in an
MCMDomain is both uniquely addressable and uniquely identifiable within that MCMDomain.

The purpose of this class is to define the concept of a domain. This enables different types of
domains to be defined as subclasses in the future.

[D62] An MCMDomain SHOULD NOT be used to contain MCMManagedEntity
objects.

At this time, no attributes are defined for the MCMDomain class.

At this time, no operations are defined for the MCMDomain class.

At this time, no relationships are defined for the MCMDomain class.

7.7.2 MCMManagementDomain Class Definition

This is a concrete class, and specializes MCMDomain. Unlike an MCMDomain, an
MCMManagementDomain is used to contain zero or more MCMManagedEntities and zero or
more MCMEntities. Hence, it refines the notion of a Domain by adding several important
behavioral features, as specified in the following requirements:

[R33] First, each MCMManagedEntity that is contained in an
MCMManagementDomain MUST be uniquely identifiable for management
purposes.

[D63] Second, an MCMManagementDomain SHOULD define a set of administrators
that govern the ManagedEntities that it contains

[O16] Third, an administrator MAY be restricted to execute a subset of operations for
a given MCMManagementDomain.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 63

[D64] Fourth, an MCMManagementDomain SHOULD define a set of applications
that are responsible for different governance operations, such as monitoring and
configuration.

[O17] Fifth, different applications MAY be responsible for different governance
operations (e.g., monitoring and configuration may be done by the same or
different applications).

[D65] Sixth, an MCMManagementDomain SHOULD define a common set of
management mechanisms, such as policy rules, that are used to govern the
behavior of ManagedEntities contained in the ManagementDomain.

This set of features combine to enable an MCMManagementDomain to be administered as a single
unit.

The above concepts are represented as follows:
o Unique identifiability is satisfied by the use of objectIDs (defined in

MCMRootEntity, see section 7.3)
o Administrators are defined as a type of MCMPartyRole (see section 7.12.2.2); since

an MCMPartyRole is a type of MetaData, it can be associated with an
MCMManagementDomain through the use of the MCMEntityHasMCMMetaData
aggregation (see section 7.5.1)

o Governance operations are a specific type of MCMInternalService (see section
7.9.5.6)

o Policies are defined in the MEF Policy Driven Orchestration project.

The constraint for having an MCMDomain contain MCMManagedEntities, and not simply
MCMEntities, is realized using the MCMMgmtDomainHasMCMManagedEntity aggregation.
This aggregation is realized using an association class (called
MCMMgmtDomainHasMCMManagedEntityDetail), whose attributes are controlled by a set of
policies.

[O18] This association MAY also be further refined using OCL.

Currently, no attributes are defined for this class.

Table 19 defines the operations for the MCMManagementDomain class.

Operation Name Description

getMCMMgmtDomainParent() :
MCMMgmtDomainComposite[1..
1]

This operation returns the parent of this MCMDomain
object.
[D66] If this MCMDomain object has no parent, then

a NULL MCMDomainComposite object
SHOULD be returned.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 64

setMCMMgmtDomainParent(
in newParent :
MCMMgmtDomainComposite[1..
1])

This operation defines the parent of this MCMDomain
object.
[D67] If this MCMDomain object already has a

parent, then an exception SHOULD be raised.

[R34] This MCMLocation object MUST NOT have
more than one parent.

Table 19. Operations of the MCMManagementDomain Class

At this time, a single aggregation is defined for the MCMManagementDomain class. This
aggregation is named MCMMgmtDomainHasMCMMgdEntity, and defines the set of
MCMManagedEntities that are contained in this particular MCMManagementDomain. The
multiplicity of this aggregation is 0..1 ± 0..*. This means that this aggregation is optional (i.e., the
³0´ part of the 0..1 cardinalit\). If this aggregation is instantiated (e.g., the ³1´ part of the 0..1
cardinality), then zero or more MCMManagedEntity objects can be aggregated by this particular
MCMManagementDomain object. Note that the cardinality on the part side
(MCMManagedEntity) is 0..*; this enables an MCMManagementDomain object to be defined
without having to define an associated MCMManagedEntity object for it to aggregate. Since there
are different types of MCMManagementDomain objects as well as different types of
MCMManagedEntity objects that can be contained within a given MCMManagementDomain
object, the MCMMgmtDomainHasMCMManagedEntity aggregation is realized using an
association class, called MCMMgmtDomainHasMCMMgdEntityDetail. This enables the
semantics of the MCMMgmtDomainHasMCMMgdEntity aggregation to be realized using the
attributes, operations, and relationships of the MCMMgmtDomainHasMCMMgdEntityDetail
association class.

The Policy Pattern may be used to control which type of MCMManagedEntity objects are
contained in a particular MCMManagementDomain object. See Figure 3 for an exemplary
illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the
superclass of imperative, declarative, and intent policy rules.

This class also participates in a second aggregation, called MCMHasManagementDomain; this is
defined in section 7.7.

7.7.3 MCMMgmtDomainAtomic Class Definition

This is a concrete class, and specializes MCMManagementDomain. Each MCMMgmtDomain-
Atomic has characteristics and behavior that is externally visible.

[R35] This class represents stand-alone MCMManagementDomain objects (i.e., they
MUST NOT contain another MCMMgmtDomain object).

At this time, no attributes are defined for the MCMMgmtDomainAtomic class.

At this time, no operations are defined for the MCMMgmtDomainAtomic class.

At this time, no relationships are defined for the MCMMgmtDomainAtomic class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 65

7.7.4 MCMMgmtDomainComposite Class Definition

This is a concrete class, and specializes MCMManagementDomain. This class represents a set of
related MCMManagementDomain objects that are organized into a tree structure.

[O19] Each MCMMgmtDomainComposite MAY contain zero or more
MCMMgmtDomainAtomic and/or zero or more MCMMgmtDomainComposite
objects.

At this time, no attributes are defined for the MCMMgmtDomainComposite class.

Table 20 defines the operations for the MCMMgmtDomainComposite class.

Operation Name Description

getMCMMgmtDomainChildList() :
MCMManagementDomain [1..*]

This operation returns the set of all MCMMgmtDomain
objects that are contained in this specific
MCMMgmtDomainComposite object. There are no input
parameters to this operation. This operation returns a
list of zero or more MCMMgmtDomain objects (i.e., the
list is made up of MCMMgmtDomainAtomic and/or
MCMMgmtDomainComposite objects).
[D68] If this MCMMgmtDomainComposite object

has no child objects, then a NULL
MCMMgmtDomain object SHOULD be
returned.

setMCMMgmtDomainChildList (in
childObjectList :
MCMManagementDomain [1..*])

This operation defines a set of MCMMgmtDomain
objects that will be contained by this particular
MCMMgmtDomainComposite object. This operation
takes a single input parameter, called child-ObjectList,
which is an array of one or more MCMMgmtDomain
objects (i.e., one or more MCMMgmtDomainAtomic
and/or MCMMgmtDomainComposite objects). This has
the effect of creating an instance of the
MCMHasManagementDomain aggregation between
each MCMMgmtDomain object in the childObjectList
and this particular MCMMgmtDomainComposite object.
Note that this operation first deletes any existing
contained MCMMgmtDomain objects (and their
aggregations and association classes), and then
instantiates a new set of MCMMgmtDomain objects; in
doing so, each MCMMgmtDomain object is contained
within this particular MCMMgmtDomainComposite
object by first, creating an instance of the
MCMHasManagementDomain aggregation, and second,

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 66

realizing that aggregation instance as an association
class.
[D69] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMHasManagementDomainDetail
association class).

setMCMMgmtDomainPartialChildList
(in childObjectList :
MCMManagementDomain [1..*])

This operation defines a set of one or more
MCMMgmtDomain objects that are contained within
this particular MCMMgmtDomainComposite object
WITHOUT affecting any other existing contained
MCMMgmtDomain objects or the objects that are
contained in them. This operation takes a single input
parameter, called childObjectList, which is an array of
one or more MCMMgmtDomain objects. This has the
effect of creating a set of aggregations between this
particular MCMMgmtDomainComposite object and each
of the MCMMgmtDomain objects identified in the
childObjectList.
[D70] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMHasManagementDomainDetail class).

delMCMMgmtDomainChildList ()

This operation deletes ALL contained MCMMgmtDomain
objects of this particular MCMMgmtDomainComposite
object. This has the effect of first, removing the
association class, and second, removing the aggregation,
between this MCMMgmtDomainComposite object and
each MCMMgmtDomain object that is contained in this
MCMMgmtDomainComposite object. This operation has
no input parameters.

delMCMMgmtDomainPartialChildList
(
in childObjectList :
MCMManagementDomain[1..*])

This operation deletes a set of MCMMgmtDomain
objects from this particular
MCMMgmtDomainComposite object. This operation
takes a single input parameter, called childObjectList,
which is an array of one or more MCMMgmtDomain
objects. This has the effect of first, removing the
association class and second, removing the aggregation,
between each MCMMgmtDomain object specified in the
input parameter and this MCMMgmtDomainComposite
object.

[R36] All other aggregations between this
MCMMgmtDomainComposite and other
MCMMgmtDomain objects that are not
identified in the input parameter MUST
NOT be affected.

Table 20. Operations of the MCMManagementDomainComposite Class

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 67

The MCMHasManagementDomainComposite class defines a single aggregation, called
MCMHasManagementDomain. This aggregation is used to define the set of
MCMManagementDomains that are contained within this particular
MCMMgmtDomainComposite. Its multiplicity is defined to be 0..1 ± 0..*. This means that this
aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this aggregation is instantiated
(e.g., the ³1´ part of the 0..1 cardinality), then zero or more MCMManagementDomain objects can
be aggregated by this particular MCMManagementDomainComposite object. Note that the
cardinality on the part side (MCMManagementDomain) is 0..*; this enables an
MCMManagementDomainComposite object to be defined without having to define an associated
MCMManagementDomain object for it to aggregate.

The semantics of the MCMHasManagementDomain aggregation is realized using an association
class, called MCMHasManagementDomainDetail. This enables the semantics of the
MCMHasManagementDomain aggregation to be realized using the attributes, operations, and
relationships of the MCMHasManagementDomainDetail association class.

The Policy Pattern may be used to control which specific MCMManagementDomain objects are
contained within a given MCMManagementDomainComposite object for a given context. See
Figure 3 for an exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an
abstract class that is the superclass of imperative, declarative, and intent policy rules.

7.8 MCMBusinessObject Class Hierarchy

The MCMBusinessObject class has two subclasses, as shown in Figure 11.

Figure 11. MCMBusinessObject Subclasses

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 68

MCMBusinessObject is a subclass of MCMEntity, and is a sibling of MCMManagedEntity. The
MCM models business objects differently than other types of managed entities, because: (1) their
lifecycle is different, and (2) their semantics are different. This class is the superclass of concepts
such as Orders, POCs, and Quotes. The full model of business entities is defined in the MEF
Business Model (MBM). In the MBM, all business objects that contain other objects, such as
Orders, are subclasses from MCMAggregatingBusinessObject. Similarly, all business objects that
are contained by another business object, such as OrderItems, are subclassed from
MCMSimpleBusinessObject.

Table 21 defines the purpose of the MCMBusinessObject class and each of its subclasses, and
relates them to MEF55.

Name of Class Function Relation to MEF 55

MCMBusinessObject

Defines the abstract concept of
business objects that are types
of MCMEntities, but not types
of MCMManagedEntities.
Examples include Order,
TroubleTicket, and Report.

Required by all MEF55
functional components
that interact with Business
Applications and/or
Customers.

MCMAggregatingBusiness-
Object

Defines the abstract concept of
different types of objects,
including Order, Quote, and
ProductOfferQualification
(POQ) objects, which each can
be made up of
³line item´ objects.

Required by all MEF55
functional components
that interact with Orders,
Quotes, and POCs (see
MEF57.1). Subclasses are
contained in the MBM
document.

MCMSimpleBusinessObject

Represents different types of
objects, including Order Items,
Quote Items, and POC Item
objects, which can each be
contained by objects
that group those objects
together.

Required by all MEF55
functional components
that interact with
OrderItems, QuoteItems,
and POCItems (see
MEF57.1). Subclasses are
contained in the MBM
document.

Table 21. Functions of the MCMBusinessObject and its Subclasses

7.8.1 MCMBusinessObject Class Definition

This is an abstract class, and specializes MCMEntity. It represents business objects that are
produced by the business but are not managed in the way that MCMManagedEntity objects are.
Examples include Orders, TroubleTickets, and Reports.

Note that concepts like the set of MCMPartyRoles that interact with this MCMBusinessObject,
and the time period in which this MCMBusinessObject is valid, are realized as relationships, not
attributes. More specifically, the former is provided by MCMEntityHasMCMMetaData (see

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 69

section 7.5.1), since MCMBusinessObject is a subclass of MCMEntity and therefore inherits this
aggregation. The latter is already defined in MCMMetaData (see section 7.12).

Table 22 defines the attributes of the MCMBusinessObject class. Most attributes will likely be
realized using relationships and/or operations. For example, concepts like the Buyer and Seller
object identifiers, along with Buyer order, implementation, and technical contacts [13] will be
defined using a combination of relationships and operations.

Attribute Name Mandatory? Description

mcmBusinessPurpose :
String[0..1] NO

This is a string attribute. It contains a textual
description of the business purpose of this
MCMBusinessObject.
[D71] If an object does not have a value for the

mcmCommonName attribute, then an
empty string SHOULD be used.

mcmBizObjCreationDate
: TimeAndDate[0..1] NO

This is a TimeAndDate attribute, and contains
the date and time of the manufacturing of this
object.
[D72] This attribute SHOULD have a complete

and valid time and/or date.
[O20] The implementation MAY ensure that the

fields in this data type are set to an
appropriate default value.

Table 22. Attributes of the MCMBusinessObject Class

Table 23 defines the operations of the MCMBusinessObject class.

Operation Name Description

getMCMBusinessPurpose()
: String[1..1]

This operation returns the mcmBusinessPurpose textual
attribute for this particular MCMBusinessObject. There are
no input parameters to this operation.
[D73] If a business purpose is not defined, then an empty

string SHOULD be returned.

setMCMBusinessPurpose(in
bizPurpose: String[1..1])

This operation sets the mcmBusinessPurpose textual attribute
for this particular MCMBusinessObject. There is a single
input parameter, of type String, which contains the new text
of the business purpose.
[D74] If a business purpose is not defined, then an empty

string SHOULD be used.
getMCMDateCreated() :
TimeAndDate[1..1]

This is a TimeAndDate attribute, and contains the date and
time that this object was created.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 70

[D75] This attribute SHOULD have a complete and valid
time and/or date.

[O21] The implementation MAY ensure that the fields in this
data type are set to an appropriate default value.

setMCMDateCreated (in
newCreationDate:
TimeAndDate[1..1])

This is a TimeAndDate attribute, and contains the date and
time that this object was created.
[D76] This attribute SHOULD have a complete and valid

time and/or date.

Table 23. Operations of the MCMBusinessObject Class

At this time, no relationships are defined for the MCMBusinessObject class.

7.8.2 MCMAggregatingBusinessObject Class Definition

This is an abstract class, and specializes MCMBusinessObject. Its purpose is to represent different
types of objects, including Order, Quote, and ProductOfferQualification (POC) objects, which
each can be made up of ³line item´ objects (e.g., OrderItems, QuoteItems, and POCItems). More
specifically, an Order may include OrderItems, a Quote may include QuoteItems, and a POC may
include POCItems.

There are two ways to realize this restriction. The first is to apply OCL to the aggregation, while
the second is to use the association class to restrict which types of part components (e.g., an
OrderItem) can be aggregated by which type of aggregating object (i.e., an Order in this example).

This class currently has no attributes. This is because its purpose is to enable its concrete subclasses
to aggregate (i.e., contain) concrete subclasses of the MCMSimpleObject class.

This class participates in one relationship, called MCMAggregatesSimpleBusinessObject. This is
an aggregation, and defines the set of concrete subclasses of MCMSimpleBusinessObject that a
concrete subclass of this MCMAggregatingBusinessObject can contain.

All subclasses of MCMAggregatingBusinessObject inherit this relationship. The multiplicity of
this aggregation is 0..1 ± 1..*. This means that this aggregation is optional (i.e., the ³0´ part of the
0..1 cardinalit\). If this aggregation is instantiated (e.g., the ³1´ part of the 0..1 cardinalit\), then
one or more MCMSimpleBusinessObject objects can be aggregated by this particular
MCMAggregatingBusinessObject.

The semantics of this aggregation are defined by the
MCMAggregatesSimpleBusinessObjectDetail association class. This enables a particular set of
MCMSimpleBusinessObjects to be contained by a given MCMAggregatingBusinessObject. Note
that the MCMAggregatesSimpleBusinessObjectDetail association class is abstract; this enables
the developer to build concrete subclasses of this association class to define details specific to
different combinations of MCMAggregatingBusinessObject and MCMSimpleBusinessObject.
For example, a concrete association class could be defined to restrict which particular subclasses
of MCMSimpleBusinessObject may be aggregated by a particular concrete subclass of
MCMAggregatingBusinessObject.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 71

The Policy Pattern may be used to control which specific MCMOrderItem objects are attached to
a given MCMOrderStructure object for a given context.

7.8.3 MCMSimpleBusinessObject Class Definition

This is an abstract class. Its purpose is to represent different types of objects, including Order
Items, Quote Items, and POC Item objects, which can each be contained by objects that group
those objects together. More specifically, a set of OrderItem objects may be contained by an Order
object, a set of QuoteItem objects may be contained by a Quote object, and a set of POCItem
objects may be contained by a POC object.

This class currently has no attributes. This is because its purpose is to enable its concrete subclasses
to be aggregated by (i.e., contained by) concrete subclasses of the
MCMAggregatingBusinessObject class.

7.9 MCMManagedEntity Class Hierarchy

The MCMManagedEntity class has six abstract subclasses, as shown in Figure 12.

Figure 12. ManagedEntity Subclasses

Table 24 defines the purpose of this hierarchy, and aligns them to [1]. The purpose of the
MCMManagedEntity hierarchy is to model the major different types of manageable entities that
are of interest to the managed environment. This hierarchy is based around the need to represent
and manage Products, Services, and Resources. As such, the MCMDefinition hierarchy is used to
specify common characteristics and behavior of these three concepts, and the MCMPolicyObject
hierarchy is used to manage these three concepts.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 72

Name of Class Function Relation to MEF 55

MCMManagedEntity

Represents objects that have the following
common semantics: (1) each has the
potential to be managed; (2) each can be
associated with at least one
MCMManagementDomain; (3) each is
related to Products, Resources, and/or
Services of the system being managed.

The base class for
defining Products,
Services, and
Resources that are
defined and used in
MEF55.

MCMDefinition

The MCM equivalent of the ONF and TMF
³specification´ classes. It defines the
salient characteristics, capabilities, and
constraints of concrete subclasses of an
MCMManagedEntity. When concrete
subclasses of MCMDefinition are
instantiated, these characteristics,
capabilities, and constraints will be
invariant over all instances of each concrete
subclass of MCMDefinition.

Critical to enabling
scalable and
consistent creation of
Product, Service, and
Resource hierarchies
that share common
properties and
behavior.

MCMPolicyObject

The root of the Policy Model. This
provides a set of abstractions for viewing
any type of Policy, regardless of its
programming paradigm (e.g., imperative,
declarative, intent), as a set of statements.

Realizes the Policy
Driven Orchestration
information model.
Enables imperative,
declarative, and
intent policies to be
used in an MEF LSO
environment.

MCMProduct

Defines the set of goods and services,
offered to a market by an MCMParty that is
playing an appropriate MCMPartyRole.
MCMProducts are purchased by an
MCMCustomer, which is a type of
MCMPartyRole. Each such purchased
Product is based on an MCMProductOffer,
even if it uses shared Resources and/or
Services, and results in a separate instance
of the MCMProduct class.

Models Products in
an extensible way.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 73

MCMResource

Defines a set of capabilities that may be
consumed by other Resources and/or
Services. Resources are typically limited in
quantity and/or availability. Resources may
be logical or virtual in nature. Note that
physical resources are NOT defined as a
subclass of Resource because a physical
entity is not inherently manageable. Rather,
physical resources are defined by the
PhysicalElement class, which is a subclass
of UnManagedEntity.

Models Resources in
an extensible way.
This includes legacy
as well as NFV,
SDN, and other types
of Resources.

MCMService

Represents functionality that can be used
by different internal and external users
(e.g., a management system and a
Customer, respectively) for different
purposes. Services may be used by other
Services, but not by Resources.

Models Services in
an extensible way.

MCMServiceEndpoint Represents the (logical) point of delivery of
the Service to a consumer.

Superclass for
services as defined in
the MEF Services
Common Model.

Table 24. Functions of the MCMManagedEntity Class and its Subclasses

7.9.1 MCMManagedEntity Class Definition

This is an abstract class, and specializes MCMEntity. It represents objects that have the following
common semantics: (1) each has the potential to be managed; (2) each can be associated with at
least one ManagementDomain; (3) each can be related to Products, Resources, and/or Services of
the system being managed.

A common need of many operational and business support systems is to define an objectID that
meets their business needs. For example, a purchase order ID might be expected to have a
particular structure. The MCM has therefore defined an attribute, called mcmExternalIDAttrName,
to provide this flexibility.

[R37] The mcmExternalIDAttrName attribute MUST be defined as a string, in order
to simplify the design and improve interoperability.

This enables operational and business support systems to name an attribute that can be used for all
MCMManagedEntity classes. This attribute is defined as a string, to enable different applications
to use this objectID in an interoperable manner.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 74

[O22] MCMMetaData MAY be used to augment the meaning of these attributes by
attaching a set of MCMMetaData objects to an instance of the
MCMManagedEntity class (or any of its subclasses).

Table 25 defines the attributes of the MCMManagedEntity class.

Attribute Name Mandatory? Description

mcmAdminState :
MCMAdmin-State[1..1] YES

This is a mandatory enumeration that defines the
set of states for what the IETF and ITU-T call
"AdminStatus". Note that the MCM extends both
of these concepts. This attribute defines the
current ability of this MCMManagedEntity to
communicate with and respond to service
requests from other MCMManagedEntity objects.
The values that this attribute can have are defined
by the MCMAdminState enumeration, and include:
 ERROR
 INIT
 ENABLED_FOR_USE
 LOCKED
 IN_TEST
 UNKNOWN

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 75

mcmOperState :
MCMOperState[1..1] YES

This is a mandatory enumeration that defines the
set of states for what the IETF and ITU-T call
"OperStatus". Note that the MCM version extends
both of these concepts. This attribute defines the
current operational state of this
MCMManagedEntity. The values that this attribute
can have are defined by the MCMOperState
enumeration, and include:
 ERROR
 INIT
 ENABLED_FOR_USE
 INSTALLED_AND_OPERATING_CORRECTLY
 INSTALLED_AND_NOT_OPERATING_CORRECTLY
 INSTALLED_BUT_NOT_OPERATING
 NOT_INSTALLED
 IN_TEST
 LOCKED
 UNKNOWN
INSTALLED_AND_NOT_OPERATING_CORRECTLY
means that the object installed but has one or
more pending alarms that have not been cleared.
INSTALLED_BUT_NOT_OPERATING means that the
object is in a shutdown, powered-off, or similar
state.
IN_TEST means that the object can only respond to
testing commands and communications
LOCKED means that the object is prohibited from
being used
UNKNOWN means that this object was unable to
report its status when communication was last
attempted

mcmMgdEntityCreationDate
: TimeAndDate[1..1] YES

This is a TimeAndDate attribute. It defines the date
and time that this MCMManagedEntity object
instance was created.
[D77] This attribute SHOULD have a

complete and valid time and/or date.
[O23] The implementation MAY ensure that

the fields in this data type are set to an
appropriate default value.

mcmExternalID-
AttrName : String[0..1] NO

The mcmExternalIDAppName attribute is a
string, and defines the name of an objectID
that an external Application is using.

[R38] This attribute MUST NOT be used as a
naming attribute (i.e., to uniquely
identify an instance of the object).

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 76

[D78] If an object does not have a value for
this class attribute, then an empty string
SHOULD be used.

Table 25. Attributes of the MCMManagedEntity Class

Table 26 defines the operations for this class:

Operation Name Description

getMCMAdminState() :
MCMAdminState[1..1]

This operation returns the value of the
mcmAdminState attribute. There are no input
parameters to this operation. The value returned
is one of the values defined in the
MCMAdminState enumeration.

setMCMAdminState (in newAdminState :
MCMAdminState[1..1])

This operation defines the new value for the
mcmAdminState attribute. There is a single input
parameter, called newAdminState (of data type
MCMAdminState) that contains a set of valid
values to be used.

getMCMOperState() :
MCMOperState[1..1]

This operation returns the value of the
mcmOperState attribute. There are no input
parameters to this operation. The value returned
is one of the values defined in the
MCMOperState enumeration.

setMCMOperState(in newOperState :
MCMOperState[1..1])

This operation defines the new value for the
mcmOperState attribute. There is a single input
parameter, called newOperState (of data type
MCMOperState) that contains a set of valid
values to be used.

getMCMMgdEntityCreationDate() :
TimeAndDate[1..1]

This operation returns the value of the
mcmMgdEntityCreationDate attribute. There are
no input parameters to this operation. The value
returned is a TimeAndDate attribute.
[D79] This attribute SHOULD have a complete

and valid time and/or date.
[O24] The implementation MAY ensure that the

fields in this data type are set to an
appropriate default value.

setMCMMgdEntityCreationDate(in
newTimeAndDate : TimeAndDate [1..1])

This operation defines a new value for the
mcmMgdEntityCreationDate attribute. There is a
single input parameter, called newTimeAndDate

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 77

(of data type TimeAndDate) that contains a set
of valid values to be used.
[D80] This attribute SHOULD have a complete

and valid time and/or date.

getMCMExternalID-
AttrName () : String[1..1]

This operation retrieves the value of the
mcmExternalIDAttrName attribute, which is a
string that contains the name of the ExternalID
attribute that is being defined for use in the
MCM.

[R39] This class attribute MUST NOT be used
as a naming attribute (i.e., to uniquely
identify an instance of the object).

[D81] If an object does not have a value for this
class attribute, then an empty string
SHOULD be used.

setMCMExternalID-
AttrName (in newAttr-Name : String[1..1])

This operation defines a new value for the
ExternalIDAttrName attribute. There is a single
input parameter, called newAttrName (of data
type String) that defines the new name of the
mcmExternal-IDAttrName attribute.

[R40] This class attribute MUST NOT be used
as a naming attribute (i.e., to uniquely
identify an instance of the object).

getMCMParentDomain() :
MCMManagementDomain[1..1])

This operation retrieves the
MCMManagementDomain that contains this
MCMManagedEntity. This operation takes no
input parameters.
[D82] If this MCMManagedEntity has no

containing MCMManagementDomain,
then it SHOULD return a NULL
MCMManagementDomain object.

setMCMParentDomain (in newMgmtDomain :
MCMManagementDomain[1..1])

This operation defines a new
MCMManagementDomain to contain this
particular MCMManagedEntity. This operation
takes a single input parameter, called
newMgmtDomain, which is an
MCMManagementDomain object.
If this MCMManagedEntity object already has a
parent MCMManagementDomain, then this
MCMManagementDomain will be deleted by
first, deleting the accompanying association

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 78

class, and second, deleting the corresponding
aggregation. Then, a new aggregation (an
instance of
MCMMgmtDomainHasMCMMgdEntity) is
created; following that, a new association class is
then created to realize the semantics of the
aggregation.
[D83] If this MCMManagementDomain object

already has a parent, then an exception
SHOULD be raised.

[R41] This MCMManagementDomain object
MUST NOT have more than one parent.

delMCMParentDomain()

This operation removes the aggregation, and its
association class, that enables this
MCMManagedEntity to be contained by this
MCMManagementDomain. This operation does
NOT affect either the MCMManagementDomain
object or the MCMManagedEntity object; it just
deletes the aggregation between this
MCMManagementDomain object and this
MCMManagedEntity. This operation has no
input parameters.

getReferredMCMUnManagedEntityList() :
MCMUnManagedEntity[1..*]

This operation retrieves the set of
MCMUnManagedEntity objects that refer to this
MCMManagedEntity object. This operation takes
no input parameters.
[D84] If this MCMManagedEntity object has no

MCMUnManagedEntity object that it
refers to, then it SHOULD return a NULL
MCMUnManagedEntity object.

setReferredMCMUnManagedEntityList(in
newUnMgdEntityList :
MCMUnManagedEntity[1..*])

This operation defines a new set of
MCMUnManagedEntity objects that refer to this
particular MCMManagedEntity object. This
operation takes a single input parameter, called
newUnMgdEntityList, which defines a set of one
or more MCMUnManagedEntity objects. If this
MCMManagedEntity object already has a set of
one or more MCMUnManagedEntity objects that
it refers to, then those MCMUnManagedEntity
objects will be deleted by first, deleting the
accompanying association class, and second,
deleting the corresponding association. Then, a
new association (an instance of

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 79

MCMMgdEntityRefersToMCMUnManagedEntity)
is created for each UnManagedEntity object in
the newUnMgdEntityList.
[D85] Every association created SHOULD have

a new association class created to realize
the semantics of that association.

setReferredMCMUnManagedEntityPartialList(in
newUnMgdEntityList :
MCMUnManagedEntity[1..*])

This operation defines a new set of
MCMUnManagedEntity objects that refer to this
particular MCMManagedEntity object. This
operation takes a single input parameter, called
newUnMgdEntityList, which defines a set of one
or more MCMUnManagedEntity objects. If this
MCMManagedEntity object already has a set of
one or more MCMUnManagedEntity objects that
it refers to, then those MCMUnManagedEntity
objects are ignored. Then, a new association (an
instance of
MCMMgdEntityRefersToMCMUnManagedEntity)
is created for each UnManagedEntity object in
the newUnMgdEntityList.
[D86] Every association created SHOULD have

a new association class created to realize
the semantics of that association.

delReferredMCMUnManagedEntity()

This operation removes the association, and its
association class, that enables this
MCMManagedEntity object to refer to any
MCMUnManagedEntity objects. This operation
does NOT affect either the
MCMUnManagedEntity object or the
MCMManagedEntity object; it just deletes the
association between this MCMManagedEntity
object and this MCMUnManagedEntity object.
This operation has no input parameters.

delReferredMCMUnManagedEntityPartial(in
unMgdEntityList :
MCMUnManagedEntity[1..1])

This operation removes the association, and its
association class, for each
MCMUnManagedEntity object in the
unMgdEntityList that is associated with this
particular MCMManagedEntity object. This
operation takes a single input parameter, called
unMgdEntityList, that defines the set of
MCMUnManagedEntity objects that will be
unlinked from this particular
MCMManagedEntity object. This operation does

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 80

NOT affect either the MCMUnManagedEntity
object or the MCMManagedEntity object; it just
deletes the association between this
MCMManagedEntity object and this
MCMUnManagedEntity object.

[R42] Any association between this
MCMManagedEntity object and other
MCMUnManagedEntity objects that are
not specified in the unMgdEntityList
MUST NOT be affected.

Table 26. Operations of the MCMManagedEntity Class

At this time, the MCMManagedEntity class defines a single association, called
MCMMgdEntityRefersToMCMUnMgdEntity. This association enables an MCMManagedEntity
to refer to a set of MCMUnManagedEntities, and vice versa. The multiplicity of this relationship
is 0..1 ± 0..*. This means that this association is optional (i.e., the ³0´ part of the 0..1 cardinalit\).
If this association is instantiated (e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more
MCMUnManagedEntity objects can be associated with this particular MCMManagedEntity
object. Note that the cardinality on the part side (MCMUnManagedEntity) is 0..*; this enables an
MCMManagedEntity object to be defined without having to define an associated
MCMUnManagedEntity object for it. For example, an MCMService could be associated with the
location of an MCMPhysicalEntity at a particular MCMLocation.

The semantics of this association are defined by the
MCMMgdEntityRefersToMCMUnMgdEntityDetail association class. This enables the semantics
of the association to be defined using the attributes and behavior of this association class. For
example, it can be used to define which MCMUnManagedEntity objects are allowed to be
associated with which MCMManagedEntity objects (or vice-versa).

The Policy Pattern (see Figure 3) may be used to define policy rules that constrain which objects
of one type are related to which objects of the other type (e.g., which MCMUnManagedEntity
objects are related to which MCMManagedEntity objects). Note that MCMPolicyStructure is an
abstract class that is the superclass of imperative, declarative, and intent policy rules.

The MCMManagedEntity class also participates in two aggregations, called
MCMMgmtDomainHasMCMMgdEntity and MCMCatalogItemContainsMCMManagedEntity.
These two aggregations are defined in sections 7.7 and 7.9.7.9, respectively.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 81

7.9.2 MCMDefinition Class Hierarchy

The MCMDefinition class hierarchy is shown in Figure 13.

Figure 13. MCMDefinition Class Hierarchy

7.9.2.1 MCMDefinition Class Definition

This is an abstract class, and specializes MCMManagedEntity. It provides the salient
characteristics, capabilities, and constraints of concrete subclasses of an MCMManagedEntity.
Hence, it can be thought of as a template that define common characteristics and behavior of
instantiated objects of this class. When concrete subclasses of MCMDefinition are instantiated,
these characteristics, capabilities, and constraints will be invariant over all instances of each
concrete subclass of MCMDefinition.

At this time, no attributes are defined for the MCMDefinition class.

At this time, no operations are defined for the MCMDefinition class.

At this time, no relationships are defined for the MCMDefinition class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 82

7.9.2.2 MCMDefinitionDecorator Class Definition

This is an abstract class, and specializes MCMDefinition. It defines the decorator pattern applied
to an MCMDefinitionDecorator, which enables all or part (e.g., a subset of the attributes of a class)
of one or more concrete subclasses of MCMFeature to ³wrap´ another concrete subclass of
MCMDefinitionDecorator (e.g., a subclass of MCMFeature or MCMBusinessTerm).

At this time, no attributes are defined for the MCMDefinitionDecorator class.

At this time, no relationships are defined for the MCMDefinitionDecorator class. It participates in
two aggregations, called MCMFeatureDecoratesMCMDefinition (see section 0) and
MCMOfferHasMCMDefinitionDecorator (see section 7.9.2.8).

7.9.2.3 MCMBusinessTerm Class Definition

This is a concrete class, and specializes MCMDefinitionDecorator. It defines the set of business
terms that dictate how a particular type of MCMOffer (i.e., a business offering, typically based on
demographics,) is sold to Customers. An MCMOffer aggregates one or more MCMFeatures,
MCMBusinessTerms, and other business logic; please see section 7.9.2.8 for the definition of an
MCMOffer.

Table 27 defines the attributes of the MCMBusinessTerm class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 83

Attribute Name Mandatory? Description
mcmBusTermRMM :
String[0..1]

NO This is a string attribute. It consists of free-form text
that describes the remote monitoring and
management (RMM) capabilities included in this
MCMOffer. RMM solutions enable many mundane,
time-consuming activities to be scripted and
delivered on a scheduled basis without human
intervention (e.g., operating system and software
application patch management, antivirus and
antispam updates, disk optimization and backup).

mcmBusTermServiceDesk
: String[0..1]

NO This is a string attribute. It defines the type of
problem management and remediation services
that are available to MCMCustomers that purchase
this MCMOffer. The service desk functions as the
single point of contact for all end-user issues.

mcmBusTermVendorMgmt
: String[0..1]

NO This is a string attribute. It defines the type of
vendor management that is included for Buyers that
purchase an MCMOffer that has this
MCMBusinessTerm. Vendor management offloads
all interactions with the vendors from the customer.
This service adds tremendous value to the
relationship between the MCMCustomer and the
MCMServiceProvider, as the MCMCustomer need
only open a service request for any issue affecting
their MCMProduct purchase.

Table 27. Attributes of the MCMBusinessTerm Class

Table 28 defines the operations for this class:

Operation Name Description

getMCMBusTermRMM() :
MCMString[1..1]

This operation returns the value of the
mcmBusTermRMM attribute. There are no input
parameters to this operation. The value returned is a
string attribute that describes the remote monitoring and
management capabilities of this MCMBusinessTerm.
[D87] If the mcmBusTermRMM attribute is empty, then

an empty string SHOULD be returned.

setMCMBusTermRMM (in
newString : String[1..1])

This operation defines a new value for the
mcmBusTermRMM attribute. There is a single input
parameter, called newString (of data type String) that
contains the text that describes the remote monitoring
and management capabilities of this MCMBusinessTerm.

http://searchsecuritychannel.techtarget.com/guides/Project-Guides
http://searchsecuritychannel.techtarget.com/guides/Project-Guides
http://searchsecuritychannel.techtarget.com/guides/Project-Guides

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 84

[O25] The newString attribute MAY contain an empty
string (e.g., for clearing this field).

getMCMBusTermServiceDesk() :
String[1..1]

This operation returns the value of the
mcmBusTermServiceDesk attribute. There are no input
parameters to this operation. The value returned is a
string attribute that describes the problem management
and remediation services of this MCMBusinessTerm.
[D88] If the mcmBusTermRMM attribute is empty, then

an empty string SHOULD be returned.

setMCMBusTermServiceDesk
(in newString : String[1..1])

This operation defines the new value for the
mcmBusTermServiceDesk attribute. There is a single
input parameter, called newString (of data type String)
that contains a description of the problem management
and remediation services of this MCMBusinessTerm.
[O26] The newString attribute MAY contain an empty

string (e.g., for clearing this field).

getMCMBusTermVendorMgmt()
: String[1..1]

This operation returns the value of the
mcmBusTermVendorMgmt attribute. There are no input
parameters to this operation. The value returned is a
String that describes the type of vendor management
that is included for Buyers that purchase an MCMOffer
that has this MCMBusinessTerm.
[D89] If the mcmBusTermVendorMgmt attribute is

empty, then an empty string SHOULD be
returned.

setMCMBusTermVendorMgmt
(in newString : String[1..1])

This operation defines a new value for the
mcmBusTermVendorMgmt attribute. There is a single
input parameter, called newString (of data type String)
that contains a description of the type of vendor
management that is included for Buyers that purchase an
MCMOffer that has this MCMBusinessTerm.
[O27] The newString attribute MAY contain an empty

string (e.g., for clearing this field).

getMCMFeatureList() :
MCMFeature[1..*]

This operation returns the set of MCMFeature objects
that currently decorate this MCMBusinessTerm object.
The return value is an array of one or more objects of
type MCMFeature.
[D90] If this MCMBusinessTerm object is not decorated

by any MCMFeature objects, then a NULL
MCMFeature object SHOULD be returned.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 85

setMCMFeatureList(in
newFeatureList :
MCMFeature[1..*])

This operation defines the set of MCMFeatures that will
decorate this MCMBusinessTerm object. This method
takes a single input parameter, called newFeatureList,
which is an array of MCMFeature objects. This operation
decorates this particular MCMBusinessTerm object with
the set of MCMFeature objects identified in the input
parameter. Note that this operation first deletes any
existing MCMFeature objects that decorate the
MCMBusinessTerm object, and then instantiates a new
set of MCMFeature objects to decorate this particular
MCMBusinessTerm object.
[O28] Implementations MAY realize the decorator

pattern in any way they wish, so long as the
Decorator forwards requests to the object that it is
wrapping.

[O29] A decorator object MAY perform additional
actions before and/or after forwarding requests to
the object that it is wrapping.

setMCMFeaturePartialList(in
newFeaturePartialList :
MCMFeature[1..*])

This operation defines the set of MCMFeatures that will
decorate this MCMBusinessTerm object WITHOUT
affecting any other decorated objects on this
MCMBusinessTerm object. This method takes a single
input parameter, called newFeaturePartialList, which is
an array of MCMFeature objects. This operation
decorates this particular MCMBusinessTerm object with
the set of MCMFeature objects identified in the input
parameter. No other model elements of this
MCMBusinessTerm object are affected.
[O30] Implementations MAY realize the decorator

pattern in any way they wish, so long as the
Decorator forwards requests to the object that it is
wrapping.

[O31] A decorator object MAY perform additional
actions before and/or after forwarding requests to
the object that it is wrapping.

delMCMFeatureList()

This operation removes ALL instances of MCMFeature
objects that were decorating this particular
MCMBusinessTerm object.
[O32] Implementations MAY remove the decorating

object any way they wish, including deleting the
object.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 86

delMCMFeaturePartialList(in
newFeaturePartialList :
MCMFeature[1..*])

This operation removes the set of MCMFeature objects
identified in the input parameter that were decorating
this MCMBusinessTerm object WITHOUT affecting any
other decorated objects on this MCMBusinessTerm
object. This operation takes a single input parameter,
called newFeaturePartialList, which is an array of one or
more MCMFeature objects.
[O33] Implementations MAY remove the decorating

object any way they wish, including deleting the
object.

Table 28. Operations of the MCMBusinessTerm Class

At this time, no relationships are defined for the MCMBusinessTerm class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 87

7.9.2.4 MCMFeature Class Description

This is an abstract class, and specializes MCMDefinitionDecorator. It defines the characteristics
or behavior of a set of functions that are contained in an MCMOffer.

Conceptually, an MCMFeature is a salient type of characteristic or behavior of an object that it
describes. An MCMFeature may be related to one or more MCMCapability objects (see section
7.12.6.1) via the MCMEntityHasMCMMetaData aggregation (see section 7.5.1). This enables a
list of used and unused capabilities to augment the definition of each MCMFeature object.

MCMFeature is the superclass for three subclasses ± MCMProductFeature, MCMServiceFeature,
and MCMResourceFeature. This enables features that are part of the templates that define
MCMProduct, MCMService, and MCMResource, respectively, to be used to construct a business
offering (a subclass of MCMOffer). MCMFeatures play an important role in constructing
MCMOffers; please see section 7.9.2.8.

At this time, no attributes are defined for the MCMFeature class.

At this time, no operations are defined for the MCMFeature class.

At this time, a single aggregation is defined for the MCMFeature class. This aggregation is named
MCMFeatureDecoratesMCMDefinition, and defines the set of MCMFeatures that wrap (or
decorate) this particular MCMDefinition object. The multiplicity of this aggregation is 0..1 ± 0..*.
This means that this aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this
aggregation is instantiated (e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more
MCMFeature objects can wrap this particular MCMDefinitionDecorator object. The 0..*
cardinality enables an MCMFeature object to be defined without having to define an associated
MCMDefinitionDecorator object for it to aggregate. The semantics of this aggregation are defined
by the MCMFeatureDecoratesMCMDefinitionDetail association class. This enables the
management system to control which set of concrete subclasses of MCMFeature (e.g., a subclass
of MCMFeature) are used to wrap a concrete subclass of MCMDefinitionDecorator (e.g., an
MCMBusinessTerm).

The Policy Pattern may be used to control which specific MCMFeature objects are used to wrap a
given MCMDefinition object for a given context. See Figure 3 for an exemplary illustration of the
Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of
imperative, declarative, and intent policy rules.

7.9.2.5 MCMProductFeature Class Definition

This is a concrete class, and specializes MCMFeature. It defines a set of the salient characteristics
and behavior used to construct an MCMProductOffer for sale to a market. The characteristics and
behavior of this class are application-specific, so in this definition of the MCM, the purpose of this
class is solely to define the concept for different applications using the MCM to be able to create
a common subclass for interoperability.

At this time, no attributes are defined for the MCMProductFeature class.

At this time, no operations are defined for the MCMProductFeature class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 88

At this time, no relationships are defined for the MCMProductFeature class.

7.9.2.6 MCMService Feature Class Definition

This is a concrete class, and specializes MCMFeature. It defines a set of the salient characteristics
and behavior used to construct an MCMProductOffer or an MCMServiceOffer for use by an
internal or external consumer. The characteristics and behavior of this class are application-
specific, so in this definition of the MCM, the purpose of this class is solely to define the concept
for different applications using the MCM to be able to create a common subclass for
interoperability.

At this time, no attributes are defined for the MCMServiceFeature class.

At this time, no operations are defined for the MCMServiceFeature class.

At this time, no relationships are defined for the MCMServiceFeature class.

7.9.2.7 MCMResourceFeature Class Definition

This is a concrete class, and specializes MCMFeature. It defines a set of the salient characteristics
and behavior used to construct an MCMProductOffer, MCMServiceOffer, or MCMResourceOffer
for use by an internal or external consumer. The characteristics and behavior of this class are
application-specific, so in this definition of the MCM, the purpose of this class is solely to define
the concept for different applications using the MCM to be able to create a common subclass for
interoperability.

At this time, no attributes are defined for the MCMResourceFeature class.

At this time, no operations are defined for the MCMResourceFeature class.

At this time, no relationships are defined for the MCMResourceFeature class.

7.9.2.8 MCMOffer Class Definition

This is an abstract class, and specializes MCMDefinition. It defines a business offering, typically
based on demographics, to interact with internal or external Customers. An Offer aggregates one
or more MCMFeatures, MCMBusinessTerms, and other business logic.

It is the superclass for three subclasses ± MCMProductOffer, MCMServiceOffer, and
MCMResourceOffer. This enables features from MCMProduct, MCMService, and
MCMResource, respectively, to be used to construct a business offering (a subclass of
MCMOffer).

The structure of MCMOffer parallels that of MCMFeature; this markedly simplifies usability of
both. Note that the MCMOfferHasMCMDefinitionDecorator aggregation is part of a pattern that
enables MCMOffers to be made up of a combination of different MCMFeatures and
MCMBusinessTerms. Since both MCMFeature and MCMBusinessTerm are subclasses of
MCMDefinitionDecorator, both can be added dynamically at runtime to an MCMOffer. This
addresses the use case of changing an order in flight without having to recompile and redeploy.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 89

At this time, no attributes are defined for the MCMOffer class. Note that concepts such as a time
period that defines the starting and ending time that this MCMOffer is valid for are realized as
associated MCMMetadata objects.

Table 29 defines the operations for this class:

Operation Name Description

getMCMBusinessTermList() :
MCMBusinessTerm[1..*]

This operation returns the set of MCMBusinessTerm
objects that are currently contained by this MCMOffer
object. The return value is an array of one or more
objects of type MCMBusinessTerm. This operation
follows all instances of the
MCMOfferHasMCMDefinitionDecorator aggregation
(i.e., from this MCMOffer object to each
MCMBusinessTerm object that it contains), and returns
the aggregated MCMBusinessTerm objects as an array.
This operation does not return any MCMFeature
objects that are decorating the set of
MCMBusinessTerm objects; if that is desired, use the
getMCMFeature operation for each MCMBusinessTerm
object that is returned.
[D91] If this object does not contain any

MCMBusinessTerm objects, then a NULL
MCMBusinessTerm object SHOULD be
returned.

setMCMBusinessTermList(
in newBusinessTermList :
MCMBusinessTerm [1..*])

This operation defines the complete set of
MCMBusinessTerm objects that will be aggregated by
this MCMOffer object. This operation takes a single
input parameter, called newBusinessTermList, which is
an array of one or more MCMBusinessTerm objects;
this represents the new MCMBusinessTerm objects that
will be aggregated by this MCMOffer object.
Any existing MCMBusinessTerm objects that are
aggregated by this MCMOffer object are first deleted.
This is done by deleting each instance of the
MCMOfferHasMCMDefinitionDecorator aggregation
(and its association class), which disconnects the
MCMBusinessTerm object from this MCMOffer object.
Note that the MCMBusinessTerm object, and any
decorating MCMFeature objects, are NOT deleted. This
operation then creates a set of aggregations (i.e., an
instance of MCMOfferHasMCMDefinitionDecorator)
between this particular MCMOffer object and the set of
MCMBusinessTerm objects identified in the input

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 90

parameter. However, this operation does not create
any decorating MCMFeature objects for a given
MCMBusinessTerm object.
[D92] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMOfferHasMCMDefinitionDecoratorDetail
class).

setMCMBusinessTermPartialList
(in newBusinessTermPartialList:
MCMBusinessTerm [1..*])

This operation defines a set of one or more
MCMBusinessTerm objects that will be aggregated by
this particular MCMOffer object WITHOUT affecting any
other existing MCMBusinessTerm objects or the objects
that are decorating them. This operation takes a single
input parameter, called
newBusinessTermItemPartialList, which is an array of
one or more MCMBusinessTerm objects. This operation
creates a set of aggregations (i.e., an instance of
MCMOfferHasMCMDefinitionDecorator) between this
particular MCMOffer object and the set of
MCMBusinessTerm objects identified in the input
parameter. This operation does not create any
decorating MCMFeature objects for a given
MCMBusinessTerm object.
[D93] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMOfferHasMCMDefinitionDecoratorDetail
class).

delMCMBusinessTermList()

This operation disconnects ALL instances of contained
MCMBusinessTerm objects for this particular MCMOffer
object. This operation first removes the association
class, and second, removes the aggregation, between
this MCMOffer object and each MCMBusinessTerm
object that is attached to this MCMOffer object. This
operation does not affect either the MCMBusinessTerm
object, or any MCMFeature objects that are decorating
each MCMBusinessTerm object.

delMCMBusinessTermPartialList
(in newBusinessTermPartialList:
MCMBusinessTerm[1..*])

This operation disconnects a set of MCMBusinessTerm
objects from being contained by this particular
MCMOffer object. This operation takes a single input
parameter, called newBusinessTermPartialList, which is
an array of one or more MCMBusinessTerm objects.
This operation first, removes the association class and
second, removes the aggregation, between each
MCMBusinessTerm object specified in the input

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 91

parameter and this MCMOffer object. This operation
does not affect either the MCMBusinessTerm object, or
any MCMFeature objects that are decorating each
MCMBusinessTerm object, specified in the input
parameter. In other words, this operation disconnects
each MCMBusinessTerm (and any MCMFeature objects
that are decorating it) that is specified in the input
parameter from this MCMOffer object.

[R43] Any association between this MCMOffer object
and other MCMBusinessTerm objects that are
not specified in the newBusinessTermPartialList
MUST NOT be affected.

Table 29. Operations of the MCMOffer Class

At this time, a single aggregation is defined for the MCMOffer class. This aggregation is named
MCMOfferHasMCMDefinitionDecorator, and defines the set of MCMDefinitionDecorators that
are contained by this particular MCMOffer object. The multiplicity of this aggregation is 0..1 ±
0..*. This means that this aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this
aggregation is instantiated (e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more
MCMDefinitionDecorator objects can be aggregated by this particular MCMOffer object. Note
that the cardinality on the part side (MCMDefinitionDecorator) is 0..*; this enables an MCMOffer
object to be defined without having to define an associated MCMDefinitionDecorator object for it
to aggregate. The semantics of this aggregation are defined by the
MCMOfferHasMCMDefinitionDecoratorDetail association class. This enables the management
system to control which set of concrete subclasses of MCMDefinitionDecorator (e.g., a concrete
subclass of MCMFeature) are contained by this particular (concrete subclass of) MCMOffer.

The Policy Pattern may be used to control which specific concrete subclasses of
MCMDefinitionDecorator are used to wrap a given concrete subclass of MCMOffer for a given
context. See Figure 3 for an exemplary illustration of the Policy Pattern. Note that
MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent
policy rules.

7.9.2.9 MCMProductOffer Class Definition

This is a concrete class, and specializes MCMOffer. It defines a business offering, typically based
on demographics, to sell MCMProducts to MCMCustomers. It consists of a set of features (defined
by one or more MCMProductFeatures, MCMServiceFeatures, and MCMResourceFeatures),
MCMBusinessTerms, and other functionality that make up an MCMProduct.

Table 30 defines the attributes for the MCMProductOffer class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 92

Attribute Name Mandatory? Description

mcmProductOfferType :
MCMProductOrderType[1..1]

YES This is a mandatory enumeration that
defines the type of MCMProduct that this
instance is. Valid values are defined by
the MCMProductOrderType enumeration.
Note that only one MCMProduct can be
ordered in a single order request. Values
include:
 0: ERROR
 1: INIT
 2: UniProduct
 3: AccessELineProduct

Table 30. Attributes of the MCMProductOffer Class

Table 31 defines the operations for this class:

Operation Name Description

getMCMProductOfferType() :
MCMProductOrderType[1..1]

This operation returns the type of MCMProduct that this
instance is. There are no input parameters to this
operation. Valid values are defined by the
MCMProductOrderType enumeration.

setMCMProductOrderType(
in newMCMProduct:
MCMProductOrderType[1..1])

This operation defines the type of MCMProduct that this
instance is. There is a single input parameter, called
newMCMProduct, which is of type
MCMProductOrderType. Valid values are defined by the
MCMProductOrderType enumeration.

Table 31. Operations of the MCMProductOffer Class

At this time, a single aggregation is defined for MCMProductOffer. This is shown in Figure 14.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 93

Figure 14. The MCMProductDefinedByMCMProductOffer Aggregation

The MCMProductDefinedByMCMProductOffer aggregation specifies the set of MCMProducts
whose characteristics and behavior are defined by this set of MCMProductOffers. The multiplicity
of this aggregation is 0..1 ± 0..*. This means that this aggregation is optional (i.e., the ³0´ part of
the 0..1 cardinalit\). If this aggregation is instantiated (e.g., the ³1´ part of the 0..1 cardinalit\),
then zero or more MCMProduct objects can be aggregated by this particular MCMProductOffer
object. Note that the cardinality on the part side (MCMProduct) is 0..*; this enables an
MCMProductOffer object to be defined without having to define an associated MCMProduct
object for it to aggregate. For example, different MCMProductOffers could be used to specify the
customer premise equipment, connectivity services, and application guarantees of a bundled
MCMProduct offering.

The semantics of this aggregation are defined by the
MCMProductDefinedByMCMProductOfferDetail association class. This enables the management
system to control which set of concrete subclasses of MCMProduct are defined by this particular
MCMProductOffer class. The Policy Pattern may be used to control which specific MCMProduct
objects are affected by which MCMProductOffer objects for a given context. See Figure 3 for an
exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class
that is the superclass of imperative, declarative, and intent policy rules.

7.9.2.10 MCMServiceOffer Class Definition

This is a concrete class, and specializes MCMOffer. It defines a business offering, typically based
on demographics, to provide Services to Consumers. It defines the characteristics and behavior of
Services that are invariant across all MCMOrderedService and MCMInternalService instances.
Users of these Services can be internal or external Applications, Services, other Resources,
PartyRoles, and other appropriate Entities. The characteristics and behavior of this class are
application-specific, so in this definition of the MCM, the purpose of this class is solely to define

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 94

the concept for different applications using the MCM to be able to create a common subclass for
interoperability.

At this time, no attributes are defined for the MCMServiceOffer class.

At this time, no operations are defined for the MCMServiceOffer class.

At this time, a single aggregation is defined for MCMServiceOffer. This is shown in Figure 15.

Figure 15. The MCMServiceDefinedByMCMService Offer Aggregation

The MCMServiceDefinedByMCMServiceOffer aggregation specifies the set of MCMServices
whose characteristics and behavior are defined by this set of MCMServiceOffers. The multiplicity
of this aggregation is 0..1 ± 0..*. This means that this aggregation is optional (i.e., the ³0´ part of
the 0..1 cardinalit\). If this aggregation is instantiated (e.g., the ³1´ part of the 0..1 cardinalit\),
then zero or more MCMService objects can be aggregated by this particular MCMServiceOffer
object. Note that the cardinality on the part side (MCMService) is 0..*; this enables an
MCMServiceOffer object to be defined without having to define an associated MCMService
object for it to aggregate. For example, different MCMServiceOffers could be used to specify
different application performance, response, and other behavior of an MCMService.

The semantics of this aggregation are defined by the
MCMServiceDefinedByMCMServiceOfferDetail association class. This enables the management
system to control which set of concrete subclasses of MCMService are defined by this particular
MCMServiceOffer class. The Policy Pattern may be used to control which specific MCMService
objects are affected by which MCMServiceOffer objects for a given context. See Figure 3 for an
exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class
that is the superclass of imperative, declarative, and intent policy rules.

7.9.2.11 MCMResourceOffer Class Definition

This is a concrete class, and specializes MCMOffer. It defines a business offering, typically based
on demographics, to provide Resources to internal or external Applications, Services, other
Resources, PartyRoles, and other appropriate Entities. It defines the characteristics and behavior
of Resources that are invariant across all concrete subclasses of Resource. The characteristics and

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 95

behavior of this class are application-specific, so in this definition of the MCM, the purpose of this
class is solely to define the concept for different applications using the MCM to be able to create
a common subclass for interoperability.

At this time, no attributes are defined for the MCMResourceOffer class.

At this time, no operations are defined for the MCMResourceOffer class.

At this time, a single aggregation is defined for MCMResourceOffer. This is shown in Figure 16.

Figure 16. The MCMResourceDefinedByMCMResourceOffer Aggregation

The MCMResouceDefinedByMCMResourceOffer aggregation specifies the set of
MCMResources whose characteristics and behavior are defined by this set of
MCMResourceOffers. The multiplicity of this aggregation is 0..1 ± 0..*. This means that this
aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this aggregation is instantiated
(e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more MCMResource objects can be
aggregated by this particular MCMResourceOffer object. Note that the cardinality on the part side
(MCMResource) is 0..*; this enables an MCMResourceOffer object to be defined without having
to define an associated MCMResource object for it to aggregateFor example, different
MCMResourceOffers could be used to define the storage, computing power, and connectivity
required by a given MCMService.

The semantics of this aggregation are defined by the
MCMResourceDefinedByMCMResourceOfferDetail association class. This enables the
management system to control which set of concrete subclasses of MCMResource objects are
defined by this particular MCMResourceOffer object. The Policy Pattern may be used to control
which specific MCMResource objects are affected by which MCMResourceOffer objects for a
given context. See Figure 3 for an exemplary illustration of the Policy Pattern. Note that
MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent
policy rules.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 96

7.9.3 MCMPolicyObject Class Definition

This is an abstract class, and specializes MCMManagedEntity. It is the root of the MEF Policy
Model (MPM). In other words, all other classes of the MPM are subclasses of this class. This
simplifies code generation and reusability. It also enables different types of MCMMetadata objects
to be attached to any appropriate subclass of MCMPolicyObject.

The MPM defines different types of policies using an extensible information model. This model
defines a set of allowable policy components for each type of policy. For example, an imperative
policy is made up of event, condition, and action clauses, whereas an intent policy is expressed in
a restricted form of English whose grammar is different.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 97

7.9.4 MCMProduct Class Hierarchy

The MCMProduct class hierarchy is shown in Figure 17.

Figure 17. The MCMProduct Class Hierarchy

7.9.4.1 MCMProduct Class Definition

This is an abstract class, and specializes MCMManagedEntity. This defines the set of goods and
services, offered to a market, by a set of MCMParties, which is playing a set of appropriate
MCMPartyRoles. MCMProducts are purchased by an MCMCustomer, which is a specific type of
MCMPartyRole.

Each such Product is based on an MCMProductOffer, even if it uses shared Resources and/or
Services, and results in a separate instance of the MCMProduct class.

Note that an MCMProduct may exist in a purchased or unpurchased state. For example, it may be
exposed to an MCMCustomer using an MCMCatalog.

At this time, no attributes are defined for the MCMProduct class. Most attributes will likely be
realized using relationships and/or operations. For example, the usage of an MCMProduct can be
considered from two viewpoints: (1) how much content is left (e.g., a subscription limits
downloads to 1Gb/months, and the current usage is 750Mb), and (2) how much time is left (e.g.,
the MCMProduct is being used on a time-limited subscription). In either of these cases, an attribute
is inappropriate, since one or more computations and information from one or more relationships
are required to provide a value. In addition, the MCMProduct itself doesn¶t ³know´ how much
usage is incurred, but can find out (e.g., by using an operation).

Table 32 defines the operations for this class:

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 98

Operation Name Description

getMCMProductParent() :
MCMProductComposite[1..1]

This operation returns the parent of this MCMProduct
object. The parent is be of type MCMProductComposite.
This operation takes no input parameters.
[D94] If this MCMProduct object has no parent, then a

NULL MCMProduct object SHOULD be returned.

setMCMProductParent(in
newParent :
MCMProductComposite[1..1])

This operation defines the parent of this MCMProduct
object. The parent is defined in the input parameter, called
newParent, and is be of type MCMProductComposite.
[D95] If this MCMProduct object already has a parent, then

an exception SHOULD be raised.

[R44] This MCMProduct object MUST NOT have more
than one parent.

Table 32. Operations of the MCMProduct Class

The MCMProduct class participates in two aggregations, which are shown in Figure 17.
MCMHasProduct is defined in section 7.9.4.3, and MCMProductDefinedByMCMProductOffer is
defined in section 7.9.2.9.

7.9.4.2 MCMProductAtomic Class Definition

This is a concrete class, and specializes MCMProduct. In addition, each MCMProductAtomic has
characteristics and behavior that are externally visible.

[R45] This class MUST NOT contain another MCMProduct object.

At this time, no attributes are defined for the MCMProductAtomic class.

At this time, no operations are defined for the MCMProductAtomic class.

At this time, no relationships are defined for the MCMProductAtomic class.

7.9.4.3 MCMProductComposite Class Definition

This is a concrete class, and specializes MCMProduct. This class represents a set of related
MCMProduct objects that are organized into a tree structure.

[O34] Each MCMProduct MAY contain zero or more MCMProductAtomic and/or
zero or more MCMProductComposite objects.

At this time, no attributes are defined for the MCMProductComposite class. Most attributes will
likely be realized using relationships and/or operations. For example, a query to an instance of the
MCMProductComposite class to provide its set of contained MCMProducts (e.g., the individual
MCMProducts that represent a triple-play or quad-play Product) will be done by using class
operations; the MCMProductComposite instance will query each of its contained MCMProducts

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 99

(which will in turn call their operations to acquire their MCMProducts), aggregate and organize
the information, and provide that information in its operation response.

Table 33 defines the operations for this class.

Operation Name Description

getMCMProductChildList() :
MCMProduct[1..*]

This operation returns the set of all MCMProduct
objects that are contained in this specific
MCMProductComposite object. There are no input
parameters to this operation. This operation returns a
list of zero or more MCMProduct objects (i.e., the list is
made up of MCMProductAtomic and/or
MCMProductComposite objects).
[D96] If this MCMProductComposite object has no

children, then it SHOULD return a NULL
MCMProductComposite object.

setMCMProductChildList (in
childObjectList :
MCMProduct[1..*])

This operation defines a set of MCMProduct objects
that will be contained by this particular
MCMProductComposite object. This operation takes a
single input parameter, called childObjectList, which is
an array of one or more MCMProduct objects (i.e., one
or more MCMProductAtomic and/or
MCMProductComposite objects). This operation first
deletes any existing contained MCMProduct objects
(and their aggregations and association classes), and
then instantiates a new set of MCMProduct objects; in
doing so, each MCMProduct object is contained within
this particular MCMProductComposite object by
creating an instance of the MCMHasProduct
aggregation.
[D97] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMHasProductDetail association class).

setMCMProductChildPartialList
(in childObjectList :
MCMProduct[1..*])

This operation defines a set of one or more
MCMProduct objects that should be contained within
this particular MCMProductComposite object
WITHOUT affecting any other existing contained
MCMProduct objects or the objects that are contained
in them. This operation takes a single input parameter,
called childObjectList, which is an array of one or more
MCMProduct objects. This operation creates a set of
aggregations between this particular
MCMProductComposite object and each of the
MCMProduct objects identified in the childObjectList.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 100

[D98] Each created aggregation SHOULD have an
association class (i.e., an instance of the
MCMHasProductDetail association class).

delMCMProductChildList()

This operation deletes ALL contained MCMProduct
objects of this particular MCMProductComposite
object. This has the effect of first, removing the
association class, and second, removing the
aggregation, between this MCMProductComposite
object and each MCMProduct object that is contained
in this MCMProductComposite object. This operation
has no input parameters.

delMCMProductPartialChildList
(in childObjectList :
MCMProduct[1..*])

This operation deletes a set of MCMProduct objects
from this particular MCMProductComposite object.
This operation takes a single input parameter, called
childObjectList, which is an array of one or more
MCMProduct objects. This has the effect of first,
removing the association class and second, removing
the aggregation, between each MCMProduct object
specified in the input parameter and this
MCMProductComposite object.

[R46] All other aggregations between this
MCMProductComposite and other
MCMProduct objects that are not identified in
the input parameter MUST NOT be affected.

Table 33. Operations of the MCMProductComposite Class

The MCMProductComposite class defines a single aggregation, called MCMHasProduct. This
aggregation is used to define the set of MCMProducts that are contained within this particular
MCMProductComposite. Its multiplicity is defined to be 0..1 ± 0..*. This means that this
aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this aggregation is instantiated
(e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more MCMProduct objects can be
aggregated by this particular MCMProductComposite object. Note that the cardinality on the part
side (MCMProduct) is 0..*; this enables an MCMProductComposite object to be defined without
having to define an associated MCMProduct object for it to aggregate.

The semantics of the MCMHasProduct aggregation is realized using an association class, called
MCMHasProductDetail. This enables the semantics of the MCMHasProduct aggregation to be
realized using the attributes, operations, and relationships of the MCMHasProductDetail
association class.

The Policy Pattern may be used to control which specific MCMProduct objects are contained
within a given MCMProductComposite object for a given context. See Figure 3 for an exemplary
illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the
superclass of imperative, declarative, and intent policy rules.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 101

7.9.5 MCMService Class Hierarchy

The MCMService class hierarchy is shown in Figure 18.

Figure 18. The MCMService Class Hierarchy

7.9.5.1 MCMService Class Definition

This is an abstract class, and specializes MCMManagedEntity. It represents functionality that can
be used by different internal and external users (e.g., a management system and a Customer,
respectively) for different purposes. Services may be consumed by other Services, but not by
Resources. A Service has a distinct state.

At this time, no attributes are defined for the MCMService class. Most attributes will likely be
realized using relationships and/or operations. For example, the usage of an MCMService can be
considered from two viewpoints: (1) how much content is left (e.g., a subscription limits
downloads to 1Gb/months, and the current usage is 750Mb), and (2) how much time is left (e.g.,
the MCMService is being used on a time-limited subscription). In this example, the MCMService
itself doesn¶t ³know´ how much usage is incurred, but can find out (e.g., b\ using a operation). As
another example, an MCMManagedEntity may need to know the status of all of the
MCMServiceEndpoints (see section 7.9.6) and MCMServiceComponents (see section 7.9.5.8) that
are associated with a particular MCMService. In either of these cases, an attribute is inappropriate,
since one or more computations and information from one or more relationships are required to
provide a value. This is exacerbated in the latter case, since MCMServiceComponents and
MCMServiceEndpoints are both objects that decorate an MCMDeliveredService (see section
7.9.5.4).

Table 34 defines the operations for this class:

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 102

Operation Name Description

getMCMServiceParent() :
MCMServiceComposite[1..1]

This operation returns the parent of this MCMService object.
The parent MUST be of type MCMServiceComposite. This
operation takes no input parameters.
[D99] If this MCMService object has no parent, then a NULL

MCMService object SHOULD be returned.

setMCMServiceParent(in
newParent :
MCMServiceComposite
[1..1])

This operation defines the parent of this MCMService object.
The parent is defined in the input parameter, called
newParent, and MUST be of type MCMServiceComposite.
[D100] If this MCMService object already has a parent, then

an exception SHOULD be raised.

[R47] This MCMService object MUST NOT have more
than one parent.

Table 34. Operations of the MCMService Class

The MCMService class participates in three aggregations, as shown in Figure 18. The
MCMServiceDefinedByServiceOffer aggregation is defined in section 7.9.2.10, the
MCMHasServiceDecorator is defined in section 7.9.5.7, and the MCMHasService aggregation is
defined in section 7.9.5.3.

7.9.5.2 MCMServiceAtomic Class Definition

This is an abstract class, and specializes MCMService. This class represents stand-alone
MCMService objects.

[R48] This object MUST NOT contain another MCMService object.

At this time, no attributes are defined for the MCMServiceAtomic class.

At this time, no operations are defined for the MCMServiceAtomic class.

At this time, no relationships are defined for the MCMServiceAtomic class.

7.9.5.3 MCMServiceComposite Class Definition

This is an abstract class, and specializes MCMService. This class represents a set of related
MCMServiceComposite objects that are organized into a tree structure.

[O35] Each MCMServiceComposite MAY contain zero or more MCMServiceAtomic
and/or zero or more MCMServiceComposite objects.

At this time, no attributes are defined for the MCMServiceComposite class. Most attributes will
likely be realized using relationships and/or operations. For example, a query to an instance of the
MCMServiceComposite class to provide its set of contained MCMServices will be done by using
class operations; the MCMServiceComposite instance will query each of its contained
MCMServiceAtomic and MCMServiceComposite objects (which will in turn call their operations

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 103

to acquire their MCMServices), aggregate and organize the information, and provide that
information in its operation response. In more detail, the MCMServiceComposite could ask for
the set of MCMInternalServices (see section 7.9.5.6) that are used to support an
MCMDeliveredService; the set of MCMInternalServices in this example could include Analytics,
Traffic Engineering, and other MCMInternalServices that are not visible to the MCMCustomer.

Table 35 defines following operations for this class:

Operation Name Description

getMCMServiceList() :
MCMService[1..*]

This operation returns the set of all MCMService objects
that are contained in this specific MCMServiceComposite
object. There are no input parameters to this operation.
This operation returns a list of zero or more MCMService
objects (i.e., the list is made up of MCMServiceAtomic
and/or MCMServiceComposite objects).
[O36] If this object does not contain any MCMService

objects, then a NULL MCMService object SHOULD
be returned.

setMCMServiceList (in
childObjectList :
MCMService [1..*])

This operation defines a set of MCMService objects that will
be contained by this particular MCMServiceComposite
object. This operation takes a single input parameter, called
childObjectList, which is an array of one or more
MCMService objects (i.e., one or more MCMServiceAtomic
and/or MCMServiceComposite objects). This operation first
deletes any existing contained MCMService objects (and
their aggregations and association classes), and then
instantiates a new set of MCMService objects; in doing so,
each MCMService object is contained within this particular
MCMServiceComposite object by creating an instance of the
MCMHasService aggregation.
[D101] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMHasServiceDetail association class).

setMCMServicePartialList
(in childObjectList :
MCMService[1..*])

This operation defines a set of one or more MCMService
objects that should be contained within this particular
MCMServiceComposite object WITHOUT affecting any other
existing contained MCMService objects or the objects that
are contained in them. This operation takes a single input
parameter, called childObjectList, which is an array of one
or more MCMService objects. This operation creates a set of
aggregations between this particular
MCMServiceComposite object and each of the MCMService
objects identified in the childObjectList.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 104

[D102] Each created aggregation SHOULD have an
association class (i.e., an instance of the
MCMHasServiceDetail association class).

delMCMServiceList()

This operation deletes ALL contained MCMService objects of
this particular MCMServiceComposite object. This has the
effect of first, removing the association class, and second,
removing the aggregation, between this
MCMServiceComposite object and each MCMService object
that is contained in this MCMServiceComposite object. This
operation has no input parameters.

delMCMServicePartialList
(in childObjectList :
MCMService[1..*])

This operation deletes a set of MCMService objects from
this particular MCMServiceComposite object. This operation
takes a single input parameter, called childObjectList, which
is an array of one or more MCMService objects. This has the
effect of first, removing the association class and second,
removing the aggregation, between each MCMService
object specified in the input parameter and this
MCMServiceComposite object.

[R49] All other aggregations between this
MCMServiceComposite and other MCMService
objects that are not identified in the input parameter
MUST NOT be affected.

Table 35. Operations for the MCMServiceComposite Class

The MCMServiceComposite class defines a single aggregation, called MCMHasService. This
aggregation is used to define the set of MCMServices that are contained within this particular
MCMServiceComposite. Its multiplicity is defined to be 0..1 ± 0..*. This means that this
aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this aggregation is instantiated
(e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more MCMService objects can be aggregated
by this particular MCMServiceComposite object. Note that the cardinality on the part side
(MCMService) is 0..*; this enables an MCMServiceComposite object to be defined without having
to define an associated MCMService object for it to aggregate.

The semantics of the MCMHasService aggregation is realized using an association class, called
MCMHasServiceDetail. This enables the semantics of the MCMHasService aggregation to be
realized using the attributes, operations, and relationships of the MCMHasServiceDetail
association class.

The Policy Pattern may be used to control which specific MCMService objects are contained
within a given MCMServiceComposite object for a given context. See Figure 3 for an exemplary
illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the
superclass of imperative, declarative, and intent policy rules.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 105

7.9.5.4 MCMDeliveredService Class Definition

This is an abstract class, and specializes MCMServiceAtomic. It represents MCMServices that are
used by consumers. Its functionality is defined by a set of one or more MCMServiceDecorators.

[R50] An operational MCMDeliveredService MUST have a set of
MCMServiceDecorators.

At this time, no attributes are defined for the MCMDeliveredService class.

Table 36 defines following operations for this class:

Operation Name Description

getMCMServiceComponentList() :
MCMService-Component[1..*]

This operation returns the set of MCMServiceComponent
objects for this MCMDeliveredService object. This operation
takes no input parameters.
First, this operation determines if there are any instances of the
MCMDeliveredServiceHasMCMServiceDecorator aggregation
for this particular MCMDeliveredService object. For each
instance of the MCMDeliveredServiceHasMCMServiceDecorator
aggregation, the instance is inspected to see if the decorating
object is of type MCMServiceComponent. All
MCMServiceComponent objects found (for all aggregation
instances) are returned as an array.
[D103] If there are no instances of the

MCMDeliveredServiceHasMCMServiceDecorator
aggregation, then a NULL MCMServiceComponent
object SHOULD be returned.

[D104] If an instance of the
MCMDeliveredServiceHasMCMServiceDecorator
aggregation exists, but none of the decorating objects are
of type MCMServiceComponent, then a NULL
MCMService-Component object SHOULD be returned.

setMCMServiceComponentList (in
newServiceComponentList :
MCMServiceComponent[1..*])

This operation defines a set of MCMServiceComponent objects
that will decorate this MCMDeliveredService object. Note that
this operation will first disconnect all existing
MCMServiceComponent objects that are aggregated by this
MCMDeliveredService object. This is done by first, removing the
MCMDeliveredSeviceHasMCMServiceDecoratorDetail
association class, and second, deleting the
MCMDeliveredServiceHasMCMServiceDecorator aggregation,
for every existing MCMComponent that is currently aggregated
by this MCMDeliveredService. Note that this operation does not

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 106

delete the MCMServiceComponent, it simply deletes the
aggregation (and association class).
Once this is done, for each MCMServiceComponent in the input
parameter, an instance of the
MCMDeliveredServiceHasMCMServiceDecorator aggregation is
created.
[D105] Each created aggregation SHOULD have an association

class (i.e., an instance of the
MCMDeliveredServiceHasMCMServiceDecoratorDetail
association class).

setMCMServiceComponentPartialList
(in newServiceComponentList :
MCMServiceComponent[1..*])

This operation will add a set of MCMServiceComponent objects
that will decorate this MCMDeliveredService object WITHOUT
affecting any existing MCMServiceComponent objects. This
operation takes a single input parameter, called
newServiceComponentList, which is an array of
MCMServiceComponent objects.
For each MCMServiceComponent in the input parameter, an
instance of the MCMDeliveredServiceHasMCMServiceDecorator
aggregation is created.
[D106] Each created aggregation SHOULD have an association

class (i.e., an instance of the
MCMDeliveredServiceHasMCMServiceDecoratorDetail
association class).

delMCMServiceComponentList()

This operation disconnects all MCMServiceComponent object
instances from this MCMDeliveredService object. This operation
takes no input parameters.
First, this operation determines if there are any instances of the
MCMDeliveredServiceHasMCMServiceDecorator aggregation
for this particular MCMDeliveredService object. For each
instance of the MCMDeliveredServiceHasMCMServiceDecorator
aggregation, the instance is inspected to see if the decorating
object is of type MCMServiceComponent. If so, then the
aggregation and its association class are both deleted.

delMCMServiceComponentPartialList
(in newServiceComponentList :
MCMServiceComponent[1..*])

This operation deletes a set of MCMServiceComponent objects
from this MCMDeliveredService object WITHOUT affecting any
other existing contained MCMServiceComponent objects or the
objects that are contained in them. This operation takes a single
input parameter, called newServiceComponentList, which is an
array of one or more MCMServiceComponent objects. This has
the effect of first, removing the association class and second,
removing the aggregation, between each

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 107

MCMServiceComponent object specified in the input parameter
and this MCMDeliveredService object.

[R51] All other aggregations between this
MCMDeliveredService and other
MCMServiceComponent objects that are not identified in
the input parameter MUST NOT be affected.

getMCMServiceEndpointList() :
MCMServiceEndpoint[1..*]

This operation returns the set of MCMServiceEndpoint objects
for this MCMDeliveredService object. This operation takes no
input parameters.
First, this operation determines if there are any instances of the
MCMDeliveredServiceHasMCMServiceDecorator aggregation
for this particular MCMDeliveredService object. Then, for each
instance of the MCMDeliveredServiceHasMCMSer-
viceDecorator aggregation, the instance is inspected to see if
the decorating object is of type MCMServiceEndpoint. All
MCMServiceEndpoint objects found (for all aggregation
instances) are returned as an array.
[D107] If there are no instances of the

MCMDeliveredServiceHasMCMServiceDecorator
aggregation, then a NULL MCMServiceComponent
object SHOULD be returned.

[D108] If an instance of the
MCMDeliveredServiceHasMCMServiceDecorator
aggregation exists, but none of the decorating objects are
of type MCMServiceEndpoint, then a NULL
MCMService-Component object SHOULD be returned.

setMCMServiceEndpointList (in
newServiceEndpointList :
MCMServiceEndpoint[1..*])

This operation defines a set of MCMServiceEndpoint objects
that will decorate this MCMDeliveredService object. Note that
this operation will first disconnect all existing
MCMServiceEndpoint objects that are aggregated by this
MCMDeliveredService object. This is done by first, removing the
MCMDeliveredServiceHasMCMServiceDecoratorDetail
association class, and second, deleting the
MCMDeliveredServiceHasMCMServiceDecorator aggregation,
for every existing MCMServiceEndpoint that is currently
aggregated by this MCMDeliveredService. Note that this
operation does not delete the MCMServiceEndpoint object, it
simply deletes the aggregation (and association class).
Once this is done, for each MCMServiceEndpoint in the input
parameter, an instance of the
MCMDeliveredServiceHasMCMServiceDecorator aggregation is
created.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 108

Table 36. Operations for the MCMDeliveredService Class

At this time, a single aggregation is defined for the MCMDeliveredService class. This aggregation
is named MCMDeliveredServiceHasMCMServiceDecorator, and defines the set of
MCMServiceDecorators that are contained by this particular MCMDeliveredService object. The
multiplicity of this aggregation is 0..1 ± 0..*. This means that this aggregation is optional (i.e., the
³0´ part of the 0..1 cardinalit\). If this aggregation is instantiated (e.g., the ³1´ part of the 0..1
cardinality), then zero or more MCMServiceDecorator objects can be aggregated by this particular
MCMDeliveredService object. Note that the cardinality on the part side (MCMServiceDecorator)
is 0..*; this enables an MCMDeliveredService object to be defined without having to define an
associated MCMServiceDecorator object for it to aggregate.

The semantics of this aggregation are defined by the
MCMDeliveredServiceHasMCMServiceDecoratorDetail association class. This enables the
management system to control which set of concrete subclasses of MCMServiceDecorators are
contained by this particular MCMDeliveredService class. The Policy Pattern may be used to
control which specific MCMServiceDecorator objects are contained within a given
MCMDeliveredService object for a particular context. See Figure 3 for an exemplary illustration
of the Policy Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of
imperative, declarative, and intent policy rules.

7.9.5.5 MCMOrderedService Class Definition

This is a concrete class, and specializes MCMDeliveredService. It represents an MCMService that
is used b\ an MCMProduct. This MCMService is reali]ed within the Service Provider¶s and/or
Partners¶ infrastructure, but is delivered to an external entity (e.g., a Customer).

[D109] Each created aggregation SHOULD have an association
class (i.e., an instance of the
MCMDeliveredServiceHasMCMServiceDecoratorDetail
association class).

setMCMServiceEndpointPartialList
(in newServiceEndpointList :
MCMServiceEndpoint[1..*])

This operation will add a set of MCMServiceEndpoint objects
that will decorate this MCMDeliveredService object WITHOUT
affecting any existing MCMServiceEndpoint objects. This
operation takes a single input parameter, called
newServiceEndpointList, which is an array of
MCMServiceEndpoint objects.
For each MCMServiceEndpoint in the input parameter, an
instance of the MCMDeliveredServiceHasMCMServiceDecorator
aggregation is created.
[D110] Each created aggregation SHOULD have an association

class (i.e., an instance of the
MCMDeliveredServiceHasMCMServiceDecoratorDetail
association class).

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 109

Note the difference between MCMOrderedService and MCMInternalService. The former is an
MCMService delivered to a Customer, while the latter is an MCMService that is necessary for the
proper operation of the infrastructure of the Service Provider or Partner.

At this time, no attributes are defined for the MCMOrderedService class.

At this time, no operations are defined for the MCMOrderedService class.

At this time, no relationships are defined for the MCMOrderedService class.

7.9.5.6 MCMInternalService Class Definition

This is a concrete class, and specializes MCMDeliveredService. It represents an MCMService that
is necessar\ for the proper operation of the Service Provider¶s infrastructure. For example, it could
represent an internal telemetry collecting service, or an internal analytics service, or an internal
service to configure an object; in all of these e[amples, ³internal´ means that the service is not
visible to external entities outside of the MCMDomain see section 7.7) that it exists in.

At this time, no attributes are defined for the MCMInternalService class.

At this time, no operations are defined for the MCMInternalService class.

At this time, no relationships are defined for the MCMInternalService class.

7.9.5.7 MCMServiceDecorator Class Definition

This is an abstract class, and specializes MCMServiceAtomic. It applies the decorator pattern to
MCMServiceAtomic objects. It enables all or part of one or more concrete subclasses of
MCMServiceDecorator to ³wrap´ another concrete subclass of MCMServiceAtomic. For
example. any concrete subclass of MCMDeliveredService may be wrapped by any concrete
subclass of MCMServiceDecorator.

At this time, no attributes are defined for the MCMServiceDecorator class.

Table 37 defines following operations for this class:
Operation Name Description

getMCMServiceComponentList() :
MCMService-Component[1..*]

This operation returns the set of MCMServiceComponent
objects that are decorating this MCMDeliveredService
object. There are no input parameters.
[D111] If this MCMDeliveredService object is not

decorated by any MCMServiceComponent objects,
then a NULL MCMServiceComponent object
SHOULD be returned.

setMCMServiceComponentList (in
newDecoratorList :
MCMServiceComponent[1..*])

This operation defines the set of MCMServiceComponent
objects that will decorate this MCMDeliveredService
object. This operation takes a single input parameter,
called newDecoratorList, which is of type

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 110

MCMServiceComponent. This operation creates a set of
aggregations between this particular
MCMDeliveredService object and the set of
MCMServiceComponent objects identified in the input
parameter. Note that this operation first deletes any
existing MCMServiceComponent objects (and their
aggregations and association classes) that decorate this
MCMDeliveredService object, and then instantiates a new
set of MCMServiceComponent objects; in doing so, each
MCMServiceComponent object is attached to this
particular MCMDeliveredService object by first, creating
an instance of the
MCMDeliveredServiceHasMCMServiceDecorator
aggregation, and second, realizing that aggregation
instance as an association class.
[D112] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMDeliveredServiceHasMCMServiceDecorator
association class).

setMCMServiceComponentPartialList
(in newDecoratorList :
MCMServiceComponent[1..*])

This operation defines a set of one or more
MCMServiceComponent objects that will decorate this
MCMDeliveredService object WITHOUT affecting any
other existing MCMServiceComponent objects that are
decorating this MCMDeliveredService object. This
operation takes a single input parameter, called
newDecoratorList, which is an array of one or more
MCMServiceComponent objects. This operation creates a
set of aggregations between this particular
MCMDeliveredService object and the set of
MCMServiceComponent objects identified in the input
parameter.
[D113] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMDeliveredServiceHasMCMServiceDecorator
association class).

delMCMServiceComponentList()

This operation deletes ALL MCMServiceComponent object
instances that are decorating this MCMDeliveredService
object. This operation first removes the association class,
and second, removes the aggregation, between this
MCMDeliveredService object and each
MCMServiceComponent object that is decorating this
MCMDeliveredService object. This operation has no input
parameters. This operation does not delete any of the
MCMServiceComponent objects; it simply disconnects

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 111

them from the MCMDeliveredService that they were
decorating.

delMCMServiceComponentPartialList
(in
newDecoratorList :
MCMServiceComponent[1..*])

This operation deletes a set of MCMServiceComponent
objects that are decorating this particular
MCMDeliveredService object. This operation takes a
single input parameter, called newDecoratorList, which is
an array of one or more MCMServiceComponent objects.
This operation first removes the association class and
second, removes the aggregation, between each
MCMServiceComponent object specified in the input
parameter and this MCMDeliveredService object.

[R52] All other aggregations between this
MCMDeliveredService object and other
MCMServiceComponent objects that are not
specified in the input parameter MUST NOT be
affected.

getMCMServiceEndpointList() :
MCMServiceEnd-point [1..*]

This operation returns the set of MCMServiceEndpoint
objects that are decorating this MCMDeliveredService
object. There are no input parameters.
[D114] If this MCMDeliveredService object is not

decorated by any MCMServiceEndpoint objects,
then a NULL MCMServiceEndpoint object
SHOULD be returned.

setMCMServiceEndpointList (in
newDecoratorList :
MCMServiceEndpoint[1..*])

This operation defines the set of MCMServiceEndpoint
objects that will decorate this MCMDeliveredService
object. This operation takes a single input parameter,
called newDecoratorList, which is of type
MCMServiceEndpoint. This operation creates a set of
aggregations between this particular
MCMDeliveredService object and the set of
MCMServiceEndpoint objects identified in the input
parameter. Note that this operation first deletes any
existing MCMServiceEndpoint objects (and their
aggregations and association classes) that decorate this
MCMDeliveredService object, and then instantiates a new
set of MCMServiceEndpoint objects; in doing so, each
MCMServiceEndpoint object is attached to this particular
MCMDeliveredService object by first, creating an instance
of the MCMDeliveredServiceHasMCMServiceDecorator
aggregation, and second, realizing that aggregation
instance as an association class.
[D115] Each created aggregation SHOULD have an

association class (i.e., an instance of the

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 112

MCMDeliveredServiceHasMCMServiceDecorator
association class).

setMCMServiceEndpointPartialList
(in newDecoratorList :
MCMServiceEnd-point[1..*])

This operation defines a set of one or more
MCMServiceEndpoint objects that will decorate this
MCMDeliveredService object WITHOUT affecting any
other existing MCMServiceEndpoint objects that are
decorating this MCMDeliveredService object. This
operation takes a single input parameter, called
newDecoratorList, which is an array of one or more
MCMServiceEndpoint objects. This operation creates a set
of aggregations between this particular
MCMDeliveredService object and the set of
MCMServiceEndpoint objects identified in the input
parameter.
[D116] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMDeliveredServiceHasMCMServiceDecorator
association class).

[R53] All other aggregations between this
MCMDeliveredService object and other
MCMServiceComponent objects that are not
specified in the input parameter MUST NOT be
affected.

delMCMServiceEndpointList()

This operation deletes ALL MCMServiceEndpoint object
instances that are decorating this MCMDeliveredService
object. This operation first removes the association class,
and second, removes the aggregation, between this
MCMDeliveredService object and each
MCMServiceEndpoint object that is decorating this
MCMDeliveredService object. This operation has no input
parameters. This operation does not delete any of the
MCMServiceEndpoint objects; it simply disconnects them
from the MCMDeliveredService that they were
decorating.

delMCMServiceEndpointPartialList
(in
newDecoratorList :
MCMServiceEndpoint[1..*])

This operation deletes a set of MCMServiceEndpoint
objects that are decorating this particular
MCMDeliveredService object. This operation takes a
single input parameter, called newDecoratorList, which is
an array of one or more MCMServiceEndpoint objects.
This operation first removes the association class and
second, removes the aggregation, between each

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 113

MCMServiceEndpoint object specified in the input
parameter and this MCMDeliveredService object.

[R54] All other aggregations between this
MCMDeliveredService object and other
MCMServiceEndpoint objects that are not
specified in the input parameter MUST NOT be
affected.

Table 37. Operations of the MCMServiceDecorator Class

At this time, a single aggregation is defined for MCMServiceDecorator. This aggregation is named
MCMHasServiceDecorator, and defines the set of MCMServiceDecorator objects that wrap (or
decorate) a concrete subclass of MCMService. This enables both MCMServiceAtomic as well as
MCMServiceComposite objects to be decorated. The multiplicity of this aggregation is 0..1 ± 0..*.
This means that this aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this
aggregation is instantiated (e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more
MCMService objects can be decorated (i.e., ³wrapped´) b\ this particular MCMServiceDecorator
object. Note that the cardinality on the part side (MCMService) is 0..*; this enables an
MCMServiceDecorator object to be defined without having to define an associated MCMService
object for it to aggregate.

The semantics of this aggregation are defined by the MCMHasServiceDecoratorDetail association
class. This enables the management system to control which set of concrete subclasses of
MCMServiceDecorator wrap this particular concrete subclass of MCMService. The Policy Pattern
may be used to control which specific MCMServiceDecorator objects are allowed to wrap a given
MCMService object for a given context. See Figure 3 for an exemplary illustration of the Policy
Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imperative,
declarative, and intent policy rules.

The MCMServiceDecorator class also participates in another aggregation, called
MCMDeliveredServiceHasMCMServiceDecorator; see section 7.9.5.4.

7.9.5.8 MCMServiceComponent Class Definition

This is a concrete class, and specializes MCMServiceDecorator. It makes available a set of
MCMServiceEndpoints, including the behavior of the MCMService between those
MCMServiceEndpoints (e.g., its connectivity). An MCMServiceComponent is contained in a
single MCMManagementDomain, which is managed independently by the Service Provider.

At this time, no attributes are currently defined for this class.

At this time, no operations are currently defined for this class.

At this time, no relationships are defined for this class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 114

7.9.6 MCMServiceEndpoint Class Definition

This is a concrete class, and specializes MCMManagedEntity. It represents a (logical) point of
delivery of the Service to a consumer, as viewed by the Service.

[R55] An MCMServiceEndpoint that is in use MUST be associated with a single
MCMServiceInterface.

[O37] An MCMService MAY exist without an MCMServiceInterface; in such a case,
the MCMService is in a planned or some other type of conceptual state, but it is
not yet instantiated.

At this time, no attributes are currently defined for this class.

At this time, no operations are currently defined for this class.

At this time, a single aggregation is defined for the MCMServiceEndpoint class. This aggregation
is named MCMServiceEndpointHasMCMServiceInterface, and defines the set of
MCMServiceInterfaces that are associated with this particular MCMServiceEndpoint object. The
multiplicity of this aggregation is 0..1 - 1. This means that this aggregation is optional (i.e., the ³0´
part of the 0..1 cardinalit\). If this aggregation is instantiated (e.g., the ³1´ part of the 0..1
cardinality), then only one MCMServiceInterface object can be aggregated by this particular
MCMServiceEndoint object..

The semantics of this aggregation are defined by the
MCMServiceEndpointHasMCMServiceInterfaceDetail association class. This enables the
management system to control which MCMServiceInterface is used with a given
MCMServiceEndpoint. The Policy Pattern may be used to control which specific
MCMServiceInterface object is used with a given MCMServiceEndpoint for a given context. See
Figure 3 for an exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an
abstract class that is the superclass of imperative, declarative, and intent policy rules.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 115

7.9.7 MCMResource Class Hierarchy

The MCMResource class hierarchy is shown in Figure 19, Figure 20, and Figure 21.

Figure 19. The MCMResource Class Hierarchy, Part 1

7.9.7.1 MCMResource Class Definition

This is an abstract class, and specializes MCMManagedEntity. It provides capabilities that may be
consumed by other MCMResources and/or MCMServices. In addition, an MCMResource may
consume other MCMResources. An MCMResource has a distinct state. MCMResources are
typically limited in quantity and/or availability. MCMResources may be logical or virtual in
nature. Note that physical entities are not defined as a subclass of MCMResource, because a
physical entity is not inherently manageable. Rather, physical entities are defined by the
MCMPhysicalEntity class, which is a subclass of MCMUnManagedEntity (see section 7.6).

At this time, no attributes are currently defined for this class. A future version of this specification
will add attributes to this class hierarchy after discussions about backwards compatibility with
other models (e.g., SNMP, YANG, etc.) are completed.

At this time, no operations are currently defined for this class.

The MCMResource class participates in a single aggregation, called MCMResourceDe-
finedByMCMResourceOffer, as shown in section 7.9.2.11.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 116

7.9.7.2 MCMVirtualResource Class Definition

This is an abstract class, and specializes MCMResource. It represents a set of objects that are
configured by software to produce a new set of objects that behave like the resource(s) being
virtualized. However, the behavior of the newly created set of MCMVirtualResources are not
directly associated with the underlying physical hardware.

At this time, no attributes are currently defined for this class.

Table 38 defines following operations for this class:

Operation Name Description

getMCMVirtualResourceParent() :
MCMVirtualResource[1..1]

This operation returns the parent of this
MCMVirtualResource object. This operation takes
no input parameters.
[D117] If this MCMVirtualResource object has no

parent, then a NULL MCMVirtualResource
object SHOULD be returned.

setMCMVirtualResourceParent(in
newParent :
MCMVirtualResourceComposite[1..1])

This operation defines the parent of this
MCMVirtualResource object. The parent is defined
in the input parameter, called newParent, and is of
type MCMVirtualResourceComposite.
[D118] If this MCMVirtualResource object already

has a parent, then an exception SHOULD
be raised.

[R56] This MCMVirtualResource object MUST
NOT have more than one parent.

Table 38. Operations of the MCMVirtualResource Class

The MCMVirtualResource class participates in one aggregation, called
MCMHasVirtualResource; see section 7.9.7.4.

7.9.7.3 MCMVirtualResourceAtomic Class Definition

This is an abstract class, and specializes MCMVirtualResource.

It represents an MCMResource that is modeled as a single, stand-alone, manageable entity that is
virtualized (i.e., it is not directly associated with the underlying physical hardware).

[R57] This object MUST NOT contain another MCMVirtualResource object.

At this time, no attributes are currently defined for this class.

At this time, no operations are currently defined for this class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 117

At this time, no relationships are defined for this class.

7.9.7.4 MCMVirtualResourceComposite Class Definition

This is an abstract class, and specializes MCMVirtualResource. It represents an MCMResource
that is composite in nature (e.g., made up of multiple distinct MCMResource objects, at least one
of which can be separately managed). An MCMVirtualResourceComposite represents a whole-
part relationship; this produces a tree-structured class hierarchy. Note that a composite object
defines three types of objects: the whole, the part, and the assembly of the whole with its parts.

[O38] An MCMVirtualResourceComposite object MAY contain zero or more
MCMVirtualResourceAtomic and/or zero or more
MCMVirtualResourceComposite objects.

At this time, no attributes are defined for the MCMVirtualResourceComposite class. Most
attributes will likely be realized using relationships and/or methods. For example, a query to an
instance of the MCMVirtualResourceComposite class to provide its set of contained
MCMVirtualResources (e.g., a set of virtual Ethernet ports associated with a virtual NIC) will be
done by using class methods; the MCMVirtualResourceComposite instance will query each of its
contained MCMVirtualResources (which will in turn call their methods to acquire their
MCMVirtualResources), aggregate and organize the information, and provide that information in
its method response.

Table 39 defines following operations for this class:

Operation Name Description

getMCMVirtualResource-List() :
MCMVirtualResource[1..*]

This operation returns the set of all
MCMVirtualResource objects that are contained in
this specific MCMVirtualResourceComposite object.
There are no input parameters to this operation.
This operation returns a list of zero or more
MCMVirtualResource objects (i.e., the list is made
up of MCMVirtualResourceAtomic and/or
MCMVirtualResourceComposite objects).
[D119] If this MCMVirtualResourceComposite

object has no children, then it SHOULD
return a NULL MCMVirtualResource object.

setMCMVirtualResource-List (in
childObjectList :
MCMVirtualResource [1..*])

This operation defines a set of MCMVirtualResource
objects that will be contained by this particular
MCMVirtualResourceComposite object. This
operation takes a single input parameter, called
childObjectList, which is an array of one or more
MCMVirtualResource objects (i.e., one or more
MCMVirtualResourceAtomic and/or
MCMVirtualResource-Composite objects). This

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 118

operation first deletes any existing contained
MCMVirtualResource objects (and their
aggregations and association classes), and then
instantiates a new set of MCMVirtualResource
objects; in doing so, each MCMVirtualResource
object is contained within this particular
MCMVirtualResourceComposite object by creating
an instance of the MCMHasVirtualResource
aggregation.
[D120] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMHasVirtualResourceDetail association
class).

setMCMVirtualResource-
PartialList (in childObjectList :
MCMVirtualResource[1..*])

This operation defines a set of one or more
MCMVirtualResource objects that should be
contained within this particular
MCMVirtualResourceComposite object WITHOUT
affecting any other existing contained
MCMVirtualResource objects or the objects that are
contained in them. This operation takes a single
input parameter, called childObjectList, which is an
array of one or more MCMVirtualResource objects.
This operation creates a set of aggregations
between this particular
MCMVirtualResourceComposite object and each of
the MCMVirtualResource objects identified in the
childObjectList.
[D121] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMHasVirtualResourceDetail association
class).

delMCMVirtualResource-List()

This operation deletes ALL contained
MCMVirtualResource objects of this particular
MCMVirtualResourceComposite object. This has the
effect of first, removing the association class, and
second, removing the aggregation, between this
MCMVirtualResource Composite object and each
MCMVirtualResource object that is contained in this
MCMVirtualResourceComposite object. This
operation has no input parameters.

delMCMVirtualResourcePartialList
(in

This operation deletes a set of MCMVirtualResource
objects from this particular
MCMVirtualResourceComposite object. This

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 119

childObjectList :
MCMVirtualResource [1..*])

operation takes a single input parameter, called
childObjectList, which is an array of one or more
MCMVirtualResource objects. This has the effect of
first, removing the association class and second,
removing the aggregation, between each
MCMVirtualResource object specified in the input
parameter and this MCMVirtualResourceComposite
object.

[R58] All other aggregations between this
MCMVirtualResourceComposite and other
MCMVirtualResource objects that are not
identified in the input parameter MUST NOT
be affected.

Table 39. Operations of the MCMVirtualResourceComposite Class

The MCMVirtualResourceComposite class defines a single aggregation, called
MCMHasVirtualResource. The multiplicity of this aggregation is 0..1 ± 0..*. This means that this
aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this aggregation is instantiated
(e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more MCMVirtualResource objects can be
aggregated by this particular MCMVirtualResourceComposite object. Note that the cardinality on
the part side (MCMVirtualResource) is 0..*; this enables an MCMVirtualResourceComposite
object to be defined without having to define an associated MCMVirtualResource object for it to
aggregate.

The semantics of this aggregation are defined by the MCMHasVirtualResourceDetail association
class. This enables the management system to control which set of concrete subclasses of
MCMVirtualResource are aggregated by this particular MCMVirtualResourceComposite object.
The Policy Pattern may be used to control which specific MCMVirtualResource objects can be
aggregated by which MCMVirtualResourceComposite objects for a given context. See Figure 3
for an exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is an abstract
class that is the superclass of imperative, declarative, and intent policy rules.

7.9.7.5 MCMLogicalResource Class Definition

The top of the MCMLogicalResource class hierarchy is shown in Figure 20. The
MCMLogicalResource is the top of this class hierarchy.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 120

Figure 20. The MCMResource Class Hierarchy, Part 2

This is an abstract class, and specializes MCMResource. It represents MCMResources that are
neither physical nor virtual in nature, and which have inherent digital communication and
management capabilities. Examples include operating systems, application and management
software, protocols, and the logic required to perform forwarding, routing, and other functions.

At this time, no attributes are currently defined for this class.

Table 40 defines following operations for this class:

Operation Name Description

getMCMLogicalResourceParent() :
MCMLogicalResource[1..1]

This operation returns the parent of this
MCMLogicalResource object. This operation takes
no input parameters.
[D122] If this MCMLogicalResource object has no

parent, then a NULL MCMLogicalResource
object SHOULD be returned.

setMCMLogicalResourceParent (in
newParent) :
MCMLogicalResourceComposite[1..1]

This operation defines the parent of this
MCMLogicalResource object. The parent is defined
in the input parameter, called newParent, and is of
type MCMLogicalResourceComposite.

[R59] This MCMLogicalResource object MUST
NOT have more than one parent.

[D123] If this MCMLogicalResource object already
has a parent, then an exception SHOULD be
raised.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 121

Table 40. Operations of the MCMLogicalResource Class

The MCMLogicalResource class participates in one aggregation, called
MCMHasLogicalResource; see section 7.9.7.7.

7.9.7.6 MCMLogicalResourceAtomic Class Definition

This is an abstract class, and specializes MCMLogicalResource. It represents an MCMResource
that is modeled as a single, stand-alone, manageable object.

[R60] This object MUST NOT contain another MCMLogicalResource object.

At this time, no attributes are currently defined for this class.

At this time, no operations are currently defined for this class.

At this time, no relationships are defined for this class.

7.9.7.7 MCMLogicalResourceComposite Class Definition

This is an abstract class, and specializes MCMLogicalResource. It represents MCMResources that
are composite in nature (e.g., made up of multiple distinct MCMResource objects, at least one of
which can be separately managed). An MCMLogicalResourceComposite represents a whole-part
relationship; this produces a tree-structured class hierarchy. Note that a composite object defines
three types of objects: the whole, the part, and the assembly of the whole with its parts.

[O39] An MCMLogicalResourceComposite object MAY contain zero or more
MCMLogicalResourceAtomic and/or zero or more
MCMLogicalResourceComposite objects.

At this time, no attributes are defined for the MCMLogicalResourceComposite class. Most
attributes will likely be realized using relationships and/or methods. For example, the usage of an
MCMLogicalResourceComposite can be considered from two viewpoints: (1) how much content
is left (e.g., a subscription limits downloads to 1Gb/months, and the current usage is 750Mb), and
(2) how much time is left (e.g., it is being used on a time-limited subscription). In either of these
cases, an attribute is inappropriate, since one or more computations and information from one or
more relationships are required to provide a value. In addition, the
MCMLogicalResourceComposite itself doesn¶t ³know´ how much usage is incurred, but can find
out (e.g., by using a method). Hence, class methods will likely be added to provide more detailed
information for instances of this class in the next CfC.

Table 41 defines following operations for this class:

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 122

Operation Name Description

getMCMLogicalResource-List() :
MCMLogicalResource[1..*]

This operation returns the set of all
MCMLogicalResource objects that are contained in
this specific MCMLogicalResourceComposite object.
There are no input parameters to this operation.
This operation returns a list of zero or more
MCMLogicalResource objects (i.e., the list is made
up of MCMLogicalResourceAtomic and/or
MCMLogicalResourceComposite objects).
[D124] If this MCMLogicalResourceComposite

object has no children, then it SHOULD
return a NULL MCMLogicalResource
object.

setMCMLogicalResource-List (in
childObjectList :
MCMLogicalResource [1..*])

This operation defines a set of MCMLogicalResource
objects that will be contained by this particular
MCMLogicalResourceComposite object. This
operation takes a single input parameter, called
childObjectList, which is an array of one or more
MCMLogicalResource objects (i.e., one or more
MCMLogicalResourceAtomic and/or
MCMLogicalResource-Composite objects). This
operation first deletes any existing contained
MCMLogicalResource objects (and their
aggregations and association classes), and then
instantiates a new set of MCMLogicalResource
objects; in doing so, each MCMLogicalResource
object is contained within this particular
MCMLogicalResourceComposite object by creating
an instance of the MCMHasLogicalResource
aggregation.
[D125] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMHasLogicalResourceDetail association
class).

setMCMLogicalResource-
PartialList (in childObjectList :
MCMLogicalResource[1..*])

This operation defines a set of one or more
MCMLogicalResource objects that should be
contained within this particular
MCMLogicalResourceComposite object WITHOUT
affecting any other existing contained
MCMLogicalResource objects or the objects that are
contained in them. This operation takes a single
input parameter, called childObjectList, which is an

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 123

array of one or more MCMLogicalResource objects.
This operation creates a set of aggregations
between this particular
MCMLogicalResourceComposite object and each of
the MCMLogicalResource objects identified in the
childObjectList.
[D126] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMHasLogicalResourceDetail association
class).

delMCMLogicalResource-List()

This operation deletes ALL contained
MCMLogicalResource objects of this particular
MCMLogicalResourceComposite object. This has the
effect of first, removing the association class, and
second, removing the aggregation, between this
MCMLogicalResourceComposite object and each
MCMLogicalResource object that is contained in this
MCMLogicalResourceComposite object. This
operation has no input parameters.

delMCMLogicalResourcePartialList
(in
childObjectList :
MCMLogicalResource [1..*])

This operation deletes a set of MCMLogicalResource
objects from this particular
MCMLogicalResourceComposite object. This
operation takes a single input parameter, called
child-ObjectList, which is an array of one or more
MCMLogicalResource objects. This has the effect of
first, removing the associationnc class and second,
removing the aggregation, between each
MCMLogicalResource object specified in the input
parameter and this MCMLogicalResourceComposite
object.

[R61] All other aggregations between this
MCMLogicalResourceComposite and other
MCMLogicalResource objects that are not
identified in the input parameter MUST
NOT be affected.

Table 41. Operations of the MCMLogicalResource Class

At this time, a single aggregation is defined for the MCMLogicalResourceComposite class. This
aggregation is named MCMHasLogicalResource, and defines the set of MCMLogicalResource
objects that are contained in this particular MCMLogicalResourceComposite object. The
multiplicity of this aggregation is 0..1 ± 0..*. This means that this aggregation is optional (i.e., the
³0´ part of the 0..1 cardinalit\). If this aggregation is instantiated (e.g., the ³1´ part of the 0..1
cardinality), then zero or more MCMLogicalResource objects can be aggregated by this particular

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 124

MCMLogicalResourceComposite object. Note that the cardinality on the part side
(MCMLogicalResource) is 0..*; this enables an MCMLogicalResourceComposite object to be
defined without having to define an associated MCMLogicalResource object for it to aggregate.

The semantics of this aggregation are defined by the MCMHasLogicalResourceDetail association
class. This enables the management system to control which set of concrete subclasses of
MCMLogicalResource are contained by this particular MCMLogicalResourceComposite. This
enables a particular set of MCMLogicalResource (i.e., zero or more MCMLogicalResourceAtomic
and/or zero or more MCMLogicalResourceComposite) objects to be contained within a particular
MCMLogicalResourceComposite object. The Policy Pattern may be used to control which specific
MCMLogicalResource objects are contained within a given MCMLogicalResourceComposite for
a given context. See Figure 3 for an exemplary illustration of the Policy Pattern. Note that
MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent
policy rules.

7.9.7.8 MCMCatalog Class Definition

Figure 21 shows the remaining subclasses of MCMLogicalResourceAtomic and
MCMLogicalResourceComposite.

Figure 21. MCMResource Class Hierarchy, Part 3

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 125

MCMCatalog is a concrete class, and specializes MCMLogicalResourceComposite. It defines a
container that aggregates a set of MCMCatalogItem objects. This aggregation is inherited from the
MCMLogicalResourceComposite class, and enables an MCMCatalog to contain zero or more
ACMLogicalResourceAtomic and/or MCMLogicalResourceComposite objects (or their
subclasses).

[O40] OCL MAY be used to restrict an MCMCatalog to only aggregate
MCMCatalogItems.

Each MCMCatalogItem object can either represent an item of interest to the MCMCatalog directly,
or can represent a set of MCMManagedEntities (using the
MCMCatalogItemContainsMCMManagedEntity aggregation). The semantics of this aggregation
enable a set of MCMRoles or other MCMManagedEntities to control which MCMCatalogItems
are viewable in a given MCMCatalog. The set of MCMCatalogItems are organized according to
one or more identifying objectives (e.g., subject attributes added in a subclass of MCMCatalog, or
metadata attached to the MCMCatalog).

At this time, no attributes are defined for the MCMCatalog class. Most attributes will likely be
realized using relationships and/or methods. For example, a query to an instance of the
MCMCatalog class to provide its set of contained MCMCatalog and MCMCatalogItem objects
will be done by using class methods. The MCMCatalog instance will query each of its contained
MCMCatalog objects, as well as any MCMCatalogItem objects that it contains, aggregate and
organize the information, and provide that information in its method response.

Table 42 defines following operations for this class:

Operation Name Description

getMCMCatalogItemList() :
MCMCatalogItem[1..*]

This operation returns the set of all
MCMCatalogItem objects that are contained in this
specific MCMCatalog object. It does not return any
MCMCatalog objects, or their MCMCatalogItem
objects, which are contained within this
MCMCatalog object. There are no input parameters
to this operation. This operation returns a list of
zero or more MCMCatalogItem objects.
[D127] If this object does not contain any

MCMCatalogItem objects, then a NULL
MCMCatalogItem object SHOULD be
returned.

setMCMCatalogItemList(in
newCatalogItemList :
MCMCatalogItem[1..*])

This operation defines a set of MCMCatalogItem
objects that will be contained in this particular
MCMCatalog object. It does not affect any other
MCMCatalog objects, or their contents, that are
contained within this MCMCatalog object. This
operation takes a single input parameter, called

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 126

newCatalogItemList, which is an array of one or
more MCMCatalogItem objects. This operation first
deletes any existing contained MCMCatalogItem
objects (and their aggregations and association
classes) that are contained in this particular
MCMCatalog, and then instantiates a new set of
MCMCatalogItem objects; in doing so, each
MCMCatalogItem object is contained within this
particular MCMCatalog object by creating an
instance of the MCMHasLogicalResource
aggregation.

[R62] This operation MUST NOT affect the
contents of any MCMCatalog object that is
contained in this particular MCMCatalog
object.

[D128] Each created aggregation SHOULD have an
association class (i.e., an instance of the
MCMHasLogicalResourceDetail association
class).

setMCMServicePartialList (in
newCatalogItemList:
MCMCatalogItem[1..*])

This operation defines a set of MCMCatalogItem
objects that will be contained within this particular
MCMCatalog object WITHOUT affecting any other
existing contained MCMCatalogItem objects within
this particular MCMCatalog object. It does not
affect any other MCMCatalog objects that are
contained within this MCMCatalog object. This
operation takes a single input parameter, called
newCatalogItemList, which is an array of one or
more MCMCatalogItem objects. This operation
creates a set of aggregations between this
particular MCMCatalog object and each of the
MCMCatalogItem objects identified in the
newCatalogItem.

[R63] This operation MUST NOT affect the
contents of any MCMCatalog object that is
contained in this particular MCMCatalog
object.

[D129] Each created aggregation SHOULD have an
association class (i.e., an instance of the
MCMHasLogicalResourceDetail association
class).

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 127

getMCMCatalogFolderList() :
MCMCatalog[1..*])

This operation returns the set of all MCMCatalog
objects that are contained in this specific
MCMCatalog object. It does not return any
MCMCatalogItem objects contained within any
MCMCatalog. There are no input parameters to this
operation. This operation returns a list of zero or
more MCMCatalog objects.
[D130] If this object does not contain any

MCMCatalog objects, then a NULL
MCMCatalog object SHOULD be returned.

setMCMCatalogFolderList(in
newCatalogFolderList :
MCMCatalog[1..*])

This operation defines a set of MCMCatalog objects
that will be contained in this particular MCMCatalog
object. It does NOT add any MCMCatalogItem
objects to any MCMCatalog. This operation takes a
single input parameter, called
newCatalogFolderList, which is an array of one or
more MCMCatalog objects. This operation first
deletes any existing contained MCMCatalog objects
(and their aggregations and association classes) that
exist in this particular MCMCatalog object, and then
instantiates a new set of empty MCMCatalog
objects; in doing so, each MCMCatalog object is
contained within this particular MCMCatalog object
by creating an instance of the
MCMHasLogicalResource aggregation.

[R64] This operation MUST NOT affect the
contents of any MCMCatalog object that is
not contained in this particular MCMCatalog
object.

[D131] Each created aggregation SHOULD have an
association class (i.e., an instance of the
MCMHasLogicalResourceDetail association
class).

setMCMCatalogFolderPartialList(in
newCatalogFolderList :
MCMCatalog[1..*])

This operation defines a set of MCMCatalog objects
that will be contained in this particular MCMCatalog
object without affecting any existing MCMCatalog
objects that are contained in this particular
MCMCatalog object. It does not add any
MCMCatalogItem objects to any MCMCatalog
object. This operation takes a single input
parameter, called newCatalogFolderList, which is an
array of one or more MCMCatalog objects. This
operation instantiates a new set of empty

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 128

MCMCatalog objects in this particular MCMCatalog
object; in doing so, each MCMCatalog object is
contained within this particular MCMCatalog object
by creating an instance of the
MCMHasLogicalResource aggregation.

[R65] This operation MUST NOT affect the
contents of any MCMCatalog object that is
not contained in this particular MCMCatalog
object.

[D132] Each created aggregation SHOULD have an
association class (i.e., an instance of the
MCMHasLogicalResourceDetail association
class).

getMCMCatalogFullList() :
MCMCatalog[1..*]

This operation returns the set of all MCMCatalog
objects that are currently defined. No
MCMCatalogItem objects are returned. There are
no input parameters to this operation. This
operation returns a list of zero or more
MCMCatalog objects.
[D133] If no MCMCatalog objects exist, then a

NULL MCMCatalog object SHOULD be
returned.

delMCMCatalogItemList()

This operation deletes ALL contained
MCMCatalogItem objects contained within this
particular MCMCatalog object. This has the effect of
first, removing the association class, and second,
removing the aggregation, between this
MCMCatalog object and each MCMCatalogItem
object that is contained in this MCMCatalog object.
This operation has no input parameters.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 129

delMCMCatalogItemPartialList (in
newCatalogItemList :
MCMCatalogItem[1..*])

This operation deletes a set of MCMCatalogItem
objects from this particular MCMCatalog object.
This operation takes a single input parameter,
called newCatalogItemList, which is an array of one
or more MCMCatalogItem objects. This has the
effect of first, removing the association class and
second, removing the aggregation, between each
MCMCatalogItem object specified in the input
parameter and this MCMCatalog object.

[R66] All MCMCatalogItem objects that exist in
this particular MCMCatalog object that are
not specified in the input parameter MUST
NOT be affected.

[R67] This operation MUST NOT affect the
contents of any MCMCatalog object that is
not contained in this particular MCMCatalog
object.

delMCMCatalogFolderList()

This operation deletes ALL MCMCatalog objects
contained within this particular MCMCatalog
object. All MCMCatalogItem objects contained
within each MCMCatalog object that is to be
deleted are also deleted. This operation has no
input parameters.

[R68] All MCMCatalogItem objects that exist in
this particular MCMCatalog object MUST
be deleted.

[R69] This operation MUST NOT affect the
contents of any MCMCatalog object that is
not contained in this particular MCMCatalog
object.

delMCMCatalogItemPartialList (in
newCatalogFolderList :
MCMCatalog[1..*])

This operation deletes the set of MCMCatalog
objects contained within this particular
MCMCatalog object that match those contained in
the input parameter. All MCMCatalogItem objects
contained within each MCMCatalog object that is to
be deleted are also deleted.

[R70] All MCMCatalogItem objects that exist in
this particular MCMCatalog object MUST
be deleted.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 130

[R71] This operation MUST NOT affect the
contents of any MCMCatalog object that is
not contained in this particular MCMCatalog
object.

Table 42. Operations of the Catalog Class

At this time, no relationships are defined for this class. Note that MCMCatalog objects may contain
any number of MCMCatalogItems, because an MCMCatalog inherits the ability to aggregate
MCMLogicalResourceAtomic and/or MCMLogicalResourceComposite objects from
MCMLogicalResourceComposite. This also means that an MCMCatalog may itself contain other
MCMCatalogs (e.g., to define a tree structure of catalogs).

7.9.7.9 MCMCatalogItem Class Definition

This is an abstract class, and specializes MCMLogicalResourceAtomic. It represents a set of
MCMManagedEntities that are contained in a particular MCMCatalog and organized by a
particular identifying objective. The MCMManagedEntities to be contained in an MCMCatalog
can either be defined indirectly using the MCMCatalogItemContainsMCMManagedEntity
aggregation, or using another means (e.g., creating a subclass with dedicated attributes and
operations that describe the MCMManagedEntity directly).

No attributes are currently defined for this class.

Table 43 defines following operations for this class:

Operation Name Description

getMCMCatalogItem :
MCMManagedEntity[1..*]

This operation returns the set of all MCMManagedEntity
objects that are contained in this specific MCMCatalogItem
object. There are no input parameters to this operation. This
operation returns a list of zero or more MCMManagedEntity
objects.
[D134] If this MCMCatalogItem object is empty, then it

SHOULD return a NULL MCMManagedEntity object.

setMCMCatalogItem (in
childObjectList :
MCMManagedEntity
[1..*])

This operation defines a set of MCMManagedEntity objects
that will be contained by this particular MCMCatalogItem
object. This operation takes a single input parameter, called
childObjectList, which is an array of one or more
MCMManagedEntity objects. This operation first deletes any
existing contained MCMManagedEntity objects (and their
aggregations and association classes), and then instantiates a
new set of MCMManagedEntity objects; in doing so, each
MCMManagedEntity object is contained within this particular

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 131

MCMCatalogItem object by creating an instance of the
MCMCatalogItemContainsMCMManagedEntity aggregation.
[D135] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMCatalogItemContainsMCMManagedEntity
association class).

delMCMCatalogItem()

This operation deletes a set of MCMManagedEntity objects
from this particular MCMCatalogItem object. This has the
effect of first, removing the association class and second,
removing the aggregation, between each
MCMManagedEntity object and this MCMCatalogItem object.

Table 43. Operations of the MCMCatalogItem Class

At this time, a single relationship, called MCMCatalogItemContainsMCMManagedEntity, is
defined for the MCMCatalogItem class. Its multiplicity is defined as 0..1 ± 0..*. This means that
this aggregation is optional (i.e., the ³0´ part of the 0..1 cardinality). If this aggregation is
instantiated (e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more MCMManagedEntity
objects can be aggregated by this particular MCMCatalogItem object. Note that the cardinality on
the part side (MCMManagedEntity) is 0..*; this enables an MCMCatalogItem object to be defined
without having to define an associated MCMManagedEntity object for it to aggregate.
Significantly, this means that an MCMCatalogItem may be any type of MCMManagedEntity; this
addresses the use case of managed objects (e.g., a VNF) not being able to be categorized into a
single subclass (i.e., is it a product, resource, or service).

The semantics of this aggregation are defined by the
MCMCatalogItemContainsMCMManagedEntityDetail association class. This enables the
semantics of the aggregation to be defined using the attributes and behavior of this association
class. For example, it can be used to define which MCMManagedEntity objects are allowed to be
associated with which MCMCatalogItem objects.

Both of the above association classes can be further enhanced by using the Policy Pattern (see
Figure 3) to define policy rules that constrain which MCMManagedEntity objects are attached to
which MCMCatalogItem object. Note that MCMPolicyStructure is an abstract class that is the
superclass of imperative, declarative, and intent policy rules.

7.9.7.10 MCMServiceInterface Class Definition

This is a concrete class, and specializes MCMLogicalResourceAtomic. It represents a logical point
in a topology where other MCMResources may be used to enable an MCMServiceEndpoint to
function (i.e., be instantiated). An MCMServiceInterface may support multiple
MCMServiceEndpoints.

No attributes are currently defined for this class.

No operations are currently defined for this class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 132

At this time, a single aggregation is defined for the MCMServiceInterface class. This aggregation
is named MCMServiceEndpointHasMCMServiceInterface, and is defined in section 7.9.7.10.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 133

7.10 MCMParty Class Hierarchy

The MCMParty class has two subclasses, as shown in Figure 22.

Figure 22. MCMParty Class Hierarchy

Table 44 defines the purpose of this hierarchy, and aligns them to MEF 55 [1]. The purpose of the
MCMParty class hierarchy is to represent different individuals, groups of people, and
organizations that perform business functions in the managed environment. Such people could be
internal or external to the organization. Note that MCMParty aggregates one or more
MCMPartyRole objects (see section 7.12.2.2), which both provide a context for the business
function as well as define a set of responsibilities that a particular MCMParty has.

Name of Class Function Relation to MEF 55

MCMParty

Represents either an individual
person or a group of people. An
MCMParty may take on zero or
more MCMPartyRoles.

Represents human actors in
the MEF LSO RA.

MCMPerson Represents an individual Person Represents individual human
actors in the MEF LSO RA.

MCMOrganization Represents a group of People
and/or Organizations

Represents human actors in a
group in the MEF LSO RA.

Table 44. Functions of the MCMParty Class and its Subclasses

The following subsections describe these classes in more detail.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 134

7.10.1 MCMParty Class Definition

This is an abstract class, and specializes MCMEntity. It represents either an individual person or a
group of people functioning as an organization. A group of people can also be structured as an
organization made up of organizational units. An MCMParty may take on zero or more
MCMPartyRoles; this acts as a filter. For example, an MCMParty that takes on the role HelpDesk
can be used to represent any group or individual that performs a HelpDesk function. Behavior and
characteristics that are common to both organization and person objects are modeled in this class.

At this time, no attributes are defined for this class.

Class operations and relationships are used to provide flexibility and power in using this class (and
its subclasses). For example, an MCMManagedEntity may need to know which set of
MCMPartyRoles are currently associated with this particular MCMParty. Since MCMPartyRoles
can change dynamically at runtime, an attribute cannot accurately reflect this. In contrast, a method
can simply look for instantiated aggregations of type MCMPartyHasMCMPartyRole (see next
paragraph); it can even look at the MCMPartyHasMCMPartyRoleDetail association class, and/or
associated MCMMetaData objects, if it needs further detail.

Table 45 defines following operations for this class:

Operation Name Description

getMCMPartyParent() :
MCMOrganization[1..1]

This operation returns the parent of this MCMParty object.
This operation takes no input parameters.
[D136] If this MCMParty object has no parent, then a NULL

MCMParty object SHOULD be returned.

setMCMPartyParent(in
newParent :
MCMOrganization [1..1])

This operation defines the parent of this MCMParty object.
The parent is defined in the input parameter, called
newParent, and is of type MCMOrganization.

[R72] This MCMParty object MUST NOT have more than
one parent.

[D137] If this MCMParty object already has a parent, then an
exception SHOULD be raised.

getMCMPartyRoleList() :
MCMPartyRole[1..*]

This operation returns the set of MCMPartyRole objects that
are decorating this MCMParty object. There are no input
parameters. This operation identifies any instances of the
MCMPartyHasMCMPartyRole aggregation. For each
instance of this aggregation, this operation then adds each
MCMPartyRole defined in this aggregation to an array that
is returned by this operation.
[D138] If this MCMParty object does not aggregate any

MCMPartyRole objects, then a NULL
MCMPartyRole object SHOULD be returned.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 135

setMCMPartyRoleList (in
newPartyRoleList :
MCMPartyRole[1..*])

This operation defines the set of MCMPartyRole objects
that will be aggregated by this MCMParty object. This
operation takes a single input parameter, called
newPartyRoleList, which is an array of MCMPartyRole
objects. This operation creates a set of aggregations
between this particular MCMParty object and the set of
MCMPartyRole objects identified in the input parameter.
Note that this operation first deletes any existing
MCMPartyRole objects (and their aggregations and
association classes) that were aggregated by this MCMParty
object, and then instantiates a new set of MCMPartyRole
objects; in doing so, each MCMPartyRole object is attached
to this particular MCMParty object by first, creating an
instance of the MCMPartyHasMCMPartyRole aggregation,
and second, realizing that aggregation instance as an
association class.
[D139] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMPartyHasMCMPartyRoleDetail association
class).

setMCMPartyRolePartialList
(in newPartyRoleList:
MCMPartyRole[1..*])

This operation defines a set of one or more MCMPartyRole
objects that will decorate this MCMParty object WITHOUT
affecting any other existing MCMPartyRole objects that are
decorating this MCMParty object. This operation takes a
single input parameter, called newPartyRoleList, which is an
array of one or more MCMPartyRole objects. This
operation creates a set of aggregations between this
particular MCMParty object and the set of MCMPartyRole
objects identified in the input parameter.

[R73] This operation MUST NOT affect any existing
aggregated MCMPartyRole objects.

[D140] Each created aggregation SHOULD have an
association class (i.e., an instance of the
MCMPartyHasMCMPartyRoleDetail association
class).

delMCMPartyRoleList()

This operation deletes ALL MCMPartyRole object instances
that are decorating this MCMParty object. This operation
first removes the association class, and second, removes the
aggregation, between this MCMParty object and each
MCMPartyRole object that is aggregated by this MCMParty
object. This operation has no input parameters. This
operation does not delete any of the MCMPartyRole

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 136

objects; it simply disconnects them from the MCMParty
that they were aggregating.

[R74] This operation MUST NOT delete any
MCMPartyRole object that were aggregated by this
MCMParty.

[D141] If no MCMPartyRole objects are aggregated by this
MCMParty, then an exception SHOULD be raised.

delMCMPartyRolePartialList
(in newPartyRoleList :
MCMPartyRole[1..*])

This operation deletes a set of MCMPartyRole objects that
are aggregated by this particular MCMParty object. This
operation takes a single input parameter, called
newPartyRoleList, which is an array of one or more
MCMPartyRole objects. This operation first removes the
association class and second, removes the aggregation,
between each MCMPartyRole object specified in the input
parameter and this MCMParty object. Note that all other
aggregations between this MCMParty object and other
MCMPartyRole objects that are not specified in the input
parameter are NOT affected.

[R75] This operation MUST NOT delete any
MCMPartyRole object that is not named in the input
parameter.

[D142] If no MCMPartyRole objects are aggregated by this
MCMParty, then an exception SHOULD be raised.

Table 45. Operations of the MCMParty Class

 At this time, a single aggregation is defined for the MCMParty class. This aggregation is named
MCMPartyHasMCMPartyRole, and defines the set of MCMPartyRoles that this particular
MCMParty can take on. The multiplicity of this aggregation is 0..1 ± 0..*. This means that this
aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this aggregation is instantiated
(e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more MCMPartyRole objects can be
aggregated by this particular MCMParty object. Note that the cardinality on the part side
(MCMPartyRole) is 0..*; this enables an MCMParty object to be defined without having to define
an associated MCMPartyRole object for it to aggregate.

The semantics of this aggregation are defined by the MCMPartyHasMCMPartyRoleDetail
association class. This enables the management system to control which set of concrete subclasses
of MCMPartyHasMCMPartyRole are taken on by this particular MCMParty. The Policy Pattern
may be used to control which specific responsibilities, which are defined by a set of
MCMPartyHasMCMPartyRole objects, are taken on by a given MCMParty for a given context.
See Figure 3 for an exemplary illustration of the Policy Pattern. Note that MCMPolicyStructure is
an abstract class that is the superclass of imperative, declarative, and intent policy rules.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 137

The MCMParty class also participates in a single aggregation, called MCMHasMCMParty; please
see section 0.

One additional important aggregation is MCMPartyRoleDetailHasMCMContact; please see
section 7.11.3.

7.10.2 MCMOrganization Class Definition

This is a concrete class, and specializes MCMParty. An MCMOrganization is defined as a group
of people (e.g., defined as instances of either MCMPerson, MCMOrganization, or an appropriate
subclass of each) identified by shared interests or purpose. This includes attributes such as the
legal name of the organization; attributes such as the head of the organization, or which types of
employees belong to which organization, are instead modeled as subclasses of MCMMetaData
and associated with that MCMOrganization using the Role-Object pattern, since (1) they are not
necessary to define the concept of an MCMOrganization, and (2) they can change dynamically.

An MCMOrganization object can interact with other MCMOrganization and MCMPerson objects
directly or through its MCMPartyRole(s). Behavior and characteristics that are specific to an
MCMOrganization are modeled using a combination of classes for specific concepts augmented
by the Role-Object pattern for each; this ensures that (1) the model is not dependent on one
particular person, group, or organization, and (2) it separates the characteristics and behavior of
the Entity being modeled from its responsibilities and functions. This provides a more accurate
and extensible model.

Table 46 defines following attributes for this class:

Attribute Name Mandatory? Description

mcmIsLegalEntity
: Boolean[0..1]

NO This is a Boolean attribute. If its value is TRUE, then this
organization is a legal entity.

mcmIsTempOrg :
Boolean[0..1]

NO This is a Boolean attribute. If its value is TRUE, then this
organization represents a temporary organization that
has a defined lifetime (defined in associated
MCMMetaData). Its budget, space, resources, and other
factors are allocated only for a defined period.

mcmIsVirtualOrg
: Boolean[0..1]

NO This is a Boolean attribute. If its value is TRUE, then this
organization represents a virtual organization that
convenes using an electronic mechanism (e.g, via phone
or Internet).

mcmOrgName :
String[1..1]

YES This is a string attribute, and contains the name of this
MCMOrganization.

Table 46. Attributes of the MCMOrganization Class

Table 47 defines following operations for this class:

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 138

Operation Name Description
getMCMIsLegalEntity() :
Boolean[1..1]

This operation returns the value of the mcmIsLegalEntity
attribute. This operation takes no input parameters.

setMCMIsLegalEntity(in
isLegal : Boolean[1..1])

This operation defines the value of the mcmIsLegalEntity
attribute. It contains a single input parameter, of type Boolean.
If the value of this attribute is TRUE, then this
MCMOrganization is a legal entity.

getMCMIsTempOrg():
Boolean[1..1]

This operation returns the value of the mcmIsTempOrg
attribute. This operation takes no input parameters.

setMCMIsTempOrg (in
isTemp : Boolean[1..1])

This operation defines the value of the mcmIsTempOrg
attribute. It contains a single input parameter, of type Boolean.
If the value of this attribute is TRUE, then this
MCMOrganization is a temporary organization.

getMCMIsVirtualOrg():
Boolean[1..1]

This operation returns the value of the mcmIsLegalEntity
attribute. This operation takes no input parameters.

setMCMIsVirtualOrg(in
isVirtualOrg :
Boolean[1..1])

This operation defines the value of the mcmIsLegalEntity
attribute. It contains a single input parameter, of type Boolean.
If the value of this attribute is TRUE, then this
MCMOrganization is a virtual organization.

getMCMOrgName() :
String[1..1]

This operation returns the value of the mcmOrgName
attribute. This operation takes no input parameters.

setMCMOrgName(in
newOrgName :
String[1..1])

This operation defines the value of the mcmOrgName
attribute. It contains a single input parameter, of type String,
that will be the name of this MCMOrganization.

Table 47. Operations of the MCMOrganization Class

At this time, a single aggregation is defined for the MCMOrganization class. It is named
MCMHasMCMParty. The multiplicity of this aggregation is 0..1 ± 0..*. This means that this
aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this aggregation is instantiated
(e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more MCMParty objects can be aggregated
by this particular MCMOganization object. Note that the cardinality on the part side (MCMParty)
is 0..*; this enables an MCMOganization object to be defined without having to define an
associated MCMParty object for it to aggregate.

The semantics of this aggregation are defined by the MCMHasMCMPartyDetail association class.
This enables the management system to control which set of concrete subclasses of MCMParty
objects are aggregated by this particular MCMOrganization.

The Policy Pattern may be used to control which specific part objects (i.e., MCMParty) are
associated with which specific aggregate (i.e., MCMOrganization) object, respectively, for a given
context. See Figure 3 for an exemplary illustration of the Policy Pattern. Note that
MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent
policy rules.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 139

7.10.3 MCMPerson Class Definition

This is a concrete class, and specializes MCMParty. An MCMPerson defines the concept of an
individual that may have a set of MCMPartyRoles that formalize the responsibilities of that
individual. Attributes such as username, password, phone number(s), the format of the name of
the MCMPerson, and skills that the MCMPerson has are modeled as subclasses of MetaData and
associated with that Person using the Role-Object pattern, since (1) they are not necessary to define
the concept of an MCM attributes such as gender and birthDate Person, and (2) they can change
dynamically.

An MCMPerson can interact with an MCMOrganization directly or through his or her
MCMPartyRole(s). Behavior and characteristics that are specific to an individual are modeled
using a combination of classes for specific concepts augmented by the Role-Object pattern for
each; this ensures that (1) the model is not dependent on one particular person, group, or
organization, and (2) it separates the characteristics and behavior of the individual and his or her
responsibilities being modeled from its responsibilities and functions. This provides a more
accurate and extensible model.

Table 48 defines the attributes for the MCMPerson class.

Attribute Name
Mandatory? Description

mcmBirthDate :
TimeAndDate[1..1] YES

This is a TimeAndDate attribute. It contains the date
(and optionally, the time) that this MCMPerson was
born.
[D143] If the value of this attribute is not known, then

an accepted value to denote this SHOULD be
used.

mcmBirthPlace :
String[0..1] NO

This is a String attribute, and contains the name of the
place that this MCMPerson was born. Due to
variations in formatting, this is a simple string and not
a type of Location object.
[D144] If the value of this attribute is not known, then

an empty string SHOULD be used.

mcmFirstName :
String[0..1] NO

This is a String attribute, and contains the first name
of this MCMPerson.
[D145] If the value of this attribute is not known, then

an empty string SHOULD be used.

mcmLastName :
String[1..1] YES

This is a String attribute, and contains the last name of
this MCMPerson.
[D146] If the value of this attribute is not known, then

an empty string SHOULD be used.

Table 48. Attributes of the MCMPerson Class

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 140

No operations are currently defined for this class.

No relationships are currently defined for this class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 141

7.11 The InformationResource Class Hierarchy

Figure 23 shows the MCMInformationResource class hierarchy on the left, and some important
aggregations that the MCMInformationResource class participates in on the right. The following
subsections describe the classes in the MCMInformationResource class hierarchy in more detail.

Figure 23. The MCMInformationResource Class Hierarchy

7.11.1 MCMInformationResource Class Definition

This is an abstract class, and specializes MCMRootEntity. It defines information that is needed by
a management system to describe other information. However, that information is not an inherent
part of an MCMEntity; rather, that information is managed and controlled using another
MCMManagedEntity. For example, an IPAddress is an important concept in networking.
However, an IPAddress is not directly managed; rather, an MCMManagedEntity that is
responsible for the lifecycle of the IPAddress (e.g., a DHCPServer) is responsible for its
management. Therefore, the concept of an IPAddress is represented as a type of
MCMInformationResource, and is associated to an MCMManagedEntity that performs its
management.

No attributes are currently defined for this class.

Table 49 defines following operations for this class:

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 142

Operation Name Description

getMCMNetworkAddressFreeList() :
MCMNetworkAddress[1..*]

This operation returns the set of all
MCMNetworkAddress objects that are free-
standing (i.e., they are not aggregated by any
subclass of an MCMEntity class). The
getMCMInfoResourceList operation (of the
MCMEntity class) is used to retrieve the set of
MCMNetworkAddress objects that are
aggregated by a given MCMEntity object.
[D147] If no MCMNetworkAddress objects

are found, then a NULL
MCMNetworkAddress object
SHOULD be returned.

setMCMNetworkAddressFreeList(in
newNetAddrFreeList :
MCMNetworkAddress[1..*])

This operation defines a new set of
MCMNetworkAddresses to be created that
are free-standing (i.e., they are not
aggregated by any subclass of MCMEntity). A
single input parameter, of type
MCMNetworkAddress, defines an array of
one or more MCMNetworkAddress objects.
The operation only defines the
MCMNetworkAddress objects; it does not
associate them with an MCMEntity. The
setMCMInfoResourceList and
setMCMInfoResourcePartialList operations
(of the MCMEntity class) are used to associate
an MCMNetworkAddress to a particular
MCMEntity object.

[R76] This operation MUST NOT affect any
other MCMNetworkAddress object
that are aggregated by any MCMEntity
class.

setMCMNetworkAddressFreepartialList(in
newNetAddrFreeList :
MCMNetworkAddress[1..*])

This operation defines a new set of one or
more free-standing MCMNetworkAddress
objects (i.e., they are not aggregated by any
subclass of MCMEntity) WITHOUT affecting
any
other existing MCMNetworkAddress objects
that are associated with this MCMEntity
object. This operation takes a single input
parameter, called newNetAddrFreeList, which
is an

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 143

array of one or more MCMNetworkAddress
objects. This operation only defines the
MCMNetworkAddress objects; it does not
associate them with an MCMEntity. The
setMCMInfoResourceList and
setMCMInfoResourcePartialList operations
are used to associate an
MCMNetworkAddress to a particular
MCMEntity object.

[R77] This operation MUST NOT affect any
other MCMNetworkAddress object
that are aggregated by any MCMEntity
class.

delMCMNetworkAddressFreeList()

This operation is used to delete all free-
standing MCMNetworkAddress objects; use
the delMCMInfoResourceList or
delMCMInfoResourcePartialList operations to
delete the set of MCMNetworkAddress
objects that are aggregated by a given
MCMEntity object.

[R78] This operation MUST NOT affect any
other MCMNetworkAddress object
that are aggregated by any MCMEntity
class.

delMCMNetworkAddressFreePartialList
(in newNetworkAddressList :
MCMNetworkAddress[1..*])

This operation deletes ALL
MCMNetworkAddress object instances that
are specified in its input parameter that are
free-standing (i.e., not aggregated by any
subclass of MCMEntity). This operation takes
a single input parameter, called
newNetworkAddressList, which is of type
MCMNetworkAddress.
This operation is used to delete free-standing
MCMNetworkAddress objects; use the
delMCMInfoResourceList or
delMCMInfoResourcePartialList operations to
delete the set of MCMNetworkAddress
objects that are aggregated by a given
MCMEntity object.

[R79] This operation MUST NOT affect any
other MCMNetworkAddress object

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 144

that are aggregated by any MCMEntity
class.

getMCMContactFreeList() :
MCMContact[1..*]

This operation returns the set of all
MCMContact objects that are free-standing
(i.e., they are not aggregated by any subclass
of an MCMEntity class). The
getMCMInfoResourceList operation is used to
retrieve the set of MCMContact objects that
are aggregated by a given MCMEntity object.
[D148] If no MCMContact objects are found,

then a NULL MCMContact object
SHOULD be returned.

setMCMContactFreeList(in
newContactList : MCMContact[1..*])

This operation defines a new set of
MCMContact to be created that are free-
standing (i.e., they are not aggregated by any
subclass of MCMEntity). A single input
parameter, of type MCMContact, defines an
array of one or more MCMContact objects.
The operation only defines the MCMContact
objects; it does not associate them with an
MCMEntity. The setMCMInfoResourceList
and setMCMInfoResourcePartialList
operations are used to associate an
MCMContact to a particular MCMEntity
object.

[R80] This operation MUST NOT affect any
other MCMContact object that are
aggregated by any MCMEntity class.

setMCMContactFreePartialList(in
newContactList : MCMContact[1..*])

This operation defines a set of one or more
free-standing MCMContact objects WITHOUT
affecting any other existing MCMContact
objects. This operation takes a single input
parameter, called newContactFreeList, which
is an array of one or more MCMContact
objects. This operation only defines the
MCMContact objects; it does not associate
them with an MCMEntity. The
setMCMInfoResourceList and
setMCMInfoResourcePartialList operations
are used to associate an MCMContact to a
particular MCMEntity object.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 145

[R81] This operation MUST NOT affect any
MCMContact object that is not
specified in its input parameter.

[R82] This operation MUST NOT affect any
other MCMContact object that are
aggregated by any MCMEntity class.

delMCMContactFreeList()

This operation is used to delete all free-
standing MCMContact objects; use the
delMCMInfoResourceList or
delMCMInfoResourcePartialList operations to
delete the set of MCMContact objects that
are aggregated by a given MCMEntity object.

[R83] This operation MUST NOT affect any
other MCMContact object that are
aggregated by any MCMEntity class.

delMCMContactFreePartialList (in
newContactList : MCMContact[1..*])

This operation deletes ALL MCMContact
object instances that are specified in its input
parameter that are free-standing (i.e., not
aggregated by any subclass of MCMEntity).
This operation takes a single input parameter,
called newContactList, which is of type
MCMContact. This operation is used to delete
free-standing MCMContact objects; use the
delMCMInfoResourceList or
delMCMInfoResourcePartialList operations to
delete the set of MCMContact objects that
are aggregated by a given MCMEntity object.

[R84] This operation MUST NOT affect any
other MCMContact object that are
aggregated by any MCMEntity class.

Table 49. Operations of the MCMInformationResource Class

At this time, the MCMInformationResource class defines a single aggregation, called
MCMInfoResourceHasMCMMetaData. The multiplicity of this aggregation is 0..1 ± 0..*. This
means that this aggregation is optional (i.e., the ³0´ part of the 0..1 cardinalit\). If this aggregation
is instantiated (e.g., the ³1´ part of the 0..1 cardinalit\), then]ero or more MCMMetaData objects
can be aggregated by this particular MCMInformationResource object. Note that the cardinality
on the part side (MCMMetaData) is 0..*; this enables an MCMInformationResource object to be
defined without having to define an associated MCMMetaData object for it to aggregate.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 146

The semantics of this aggregation are defined by the MCMInfoResourceHasMCMMetaDataDetail
association class. This enables the management system to control which set of MCMMetaData
objects are aggregated by which set of MCMInformationResource objects.

Note that the Policy Pattern may be used to control which specific part objects (i.e.,
MCMMetaData) are associated with which specific aggregate (i.e., MCMInformationResource)
objects, respectively, for a given context. See Figure 3 for an exemplary illustration of the Policy
Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imperative,
declarative, and intent policy rules.

The MCMInformationResource participates in a second aggregation, called
MCMEntityHasMCMInfoResource; please see section 7.11.

7.11.2 MCMNetworkAddress Class Definition

This is an abstract class, and specializes MCMInformationResource. It defines a network address,
which is a unique identifier for a node on a network. Such identifiers can be local, private, or public
(e.g., globally unique). A network node may have zero or more MCMNetworkAddresses (e.g., a
router may have multiple interfaces, and each interface may have a set of
MCMNetworkAddresses). Examples of an MCMNetworkAddress include telephone numbers,
IPv4 and IPv6 addresses, MAC addresses, and X.21 or X.25 addresses (in a circuit-switched data
network).

No attributes are currently defined for this class.

No operations are currently defined for this class.

No relationships are currently defined for this class.

7.11.3 MCMContact Class Definition

This is a concrete class, and specializes MCMInformationResource. It represents the information
needed to communicate with a particular MCMParty or MCMPartyRole. Examples include
technical and administrative contacts for Order information and technical implementation work
(e.g., the network administrator of an MCMManagementDomain).

No attributes are currently defined for this class.

No operations are currently defined for this class.

At this time, this class participates in a single association, as shown in Figure 23. An
MCMPartyRoleDetail is an association class (see section 7.12.2.2) that defines a set of
MCMPartyRoles that are used by a given MCMParty. The
MCMPartyRoleDetailHasMCMContact is an association between the MCMPartyRoleDetail
association class and the MCMContact class. This association defines the set of MCMContacts
that are related to this particular MCMPartyRoleDetail object (i.e., the set of MCMParty objects
that are playing a specific MCMPartyRole). For example, this association can be used to define
the contact information for a set of MCMParty objects that are each playing a set of

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 147

MCMPartyRoles; a common use is to define the contact information for different types of
MCMBuyer and MCMSeller objects.

The multiplicity of this association is 0..* ± 0..*. This means that this association is optional (i.e.,
the ³0´ part of the 0..* cardinality). If this association is instantiated (e.g., the ³0..* cardinality on
the MCMPartyHasMCMPartyRoleDetail is greater than 0), then zero or more MCMContact
objects can be associated with this particular MCMPartyHasMCMPartyRoleDetail object. Note
that the cardinality on the part side (MCMContact) is 0..*; this enables an
MCMPartyHasMCMPartyRoleDetail object to be defined without having to define an associated
MCMContact object for it to aggregate.

The semantics of this aggregation are defined by the
MCMPartyRoleDetailHasMCMContactDetail association class. This enables the management
system to control which set of MCMParty-RoleDetail objects are associated to which set of
MCMContact objects.

Note that the Policy Pattern may be used to control which specific part objects (i.e.,
MCMMetaData) are associated with which specific aggregate (i.e., MCMInformationResource)
objects, respectively, for a given context. See Figure 3 for an exemplary illustration of the Policy
Pattern. Note that MCMPolicyStructure is an abstract class that is the superclass of imperative,
declarative, and intent policy rules.

7.11.4 MCMGeocode Class Definition

This is a concrete class that defines a geocode, along with information for a geocoding process.
The typical practice is to provide a set of input data, and use a geocode service to turn those data
into a geocode. This is complicated by the fact that the actual location (e.g., a postal address, or
even a land parcel) is owned by a different administrative authority (e.g., the government). Hence,
in this version of the MCM, a geocode is modeled as a subclass of InformationResource. Geocodes
can be associated with MCMEntities by using the MCMEntityHasMCMInformationResource
aggregation.

Geocodes may be defined as absolute or relative. An absolute geocode maps to one exact physical
location. For example, a USPS ZIP code (or even a USPS ZIP+4 code) is considered an absolute
geocode. In contrast, relative geocodes are textual descriptions of a location that, by itself, cannot
provide an e[act location. For e[ample, ³The nearest building northwest of building A3´ is a
relative geocode that uses the location of building A3 as its reference. Geocodes are typically
conceptualized as a polygon. Different geocoding systems use different computational
mechanisms (e.g., a centroid) to define the ³center´ of such an area.

[R85] A relative geocode MUST be specified using one or more absolute geocodes as a
reference.

[D149] Geocode data SHOULD be provided in text

[R86] Geocode data MUST be defined as either relative or absolute.

Table 50 defines the attributes of this class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 148

Attribute Name Description

mcmGeocodeValue :
String[1..1]

This is a mandatory string, and defines the value of this geocode. It is
produced by a particular geocoding process. The input data for this
geocode are defined as a string array in the mcmLocationDataList
attribute.

Table 50. Attributes of the MCMGeocode Class

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 149

7.12 The MCMMetaData Class Hierarchy

Figure 24 shows a portion of the MCMMetaData class hierarchy. This figure will be used to
describe the MCMMetaData class and the three aggregations that it participates in.

Figure 24. The MCMMetaData Class Hierarchy, Part 1

7.12.1 MCMMetaData Class Definition

This is an abstract class, and specializes MCMRootEntity. It defines prescriptive and/or descriptive
information about the object(s) to which it is attached. These descriptive and/or prescriptive
characteristics and behavior are not an inherent, distinguishing characteristic or behavior of that
object (otherwise, it would be an integral part of that object). Examples of prescriptive and
descriptive metadata are the definition of a time period during which specific types of operations
are allowed, and documentation about best current practices, respectively.

Table 51 defines following attributes for this class:

Attribute Name Mandatory? Description

mcmMetaDataEnableStatus :
MCMMetaDataEnableStatus[0..1]

NO This is an optional enumeration that
defines whether the MCMEntity that
this MCMMetaData object refers to is
enabled for normal operation or not.
The values that this attribute can have
are defined by the
MCMMetaDataEnableStatus
enumeration, and include:
 0: ERROR
 1: INIT

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 150

 2: Enabled (ok to use for all
operations)
 3: Enabled for testing only
 4: Disabled (cannot be used)
 5: Unknown (e.g., cannot be
contacted to
 ascertain state)

[R87] If the value of this attribute is 0,
1, or 4, then the associated
MCMEntity MUST NOT be
used in an operational manner.

[D150] If the value of this attribute is 5,
then the associated MCMEntity
SHOULD NOT be used in an
operational manner until
contact with it has been
reestablished.

[D151] If the value of this attribute is 3,
then the associated MCMEntity
SHOULD only be used for
testing purposes.

mcmMetaDataCreationTime :
TimeAndDate[1..1]

YES This is a TimeAndDate attribute; it
contains a datestamp and a
timestamp. It defines the date and
time that this MCMMetaData object
was created.
[D152] This attribute SHOULD have a

complete and valid time and/or
date.

[O41] The implementation MAY
ensure that the fields in this data
type are set to an appropriate
default value.

mcmMetaDataDescriptiveText :
String[0..1]

NO This attribute is a free-form textual
string, and is used to contain
descriptive content about the
MCMEntity or
MCMInformationResource to which it
is attached.

Table 51. Attributes of the MCMMetaData Class

Table 52 defines following operations for this class:

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 151

Operation Name Description

getMCMMetaDataEnable-Status() :
MCMMetaData-EnableStatus[1..1]

This method returns the value of the
mcmMetaDataEnable-Status attribute. The output is
an Enumeration of type MCMMetaDataEnableStatus.
[D153] If this object does not have a value for the

mcmLocationDataList attribute, then a NULL
string SHOULD be returned by the
getMCMLocationDataList operation.

setMCMMetaDataEnable-Status (in
newStatus :
MCMMetaDataEnableStatus1..1])

This method defines the value of the
mcmMetaDataEnable-Status attribute. A single input
parameter, of type MCMMetaDataEnableStatus, is
supplied; the value is set to one of its literal values.

getMCMMetaDataCreationTime() :
TimeAndDate[1..1]

This method returns the value of the
mcmMetaDataCreationTime attribute.
[D154] This attribute SHOULD have a complete and

valid time and/or date.
[O42] The implementation MAY ensure that the

fields in this data type are set to an appropriate
default value.

setMCMMetaDataCreationTime(in
newTime : TimeAndDate[1..1])

This method defines the value of the
mcmMetaDataCreationTime attribute. A single input
parameter, of type TimeAndDate, is supplied.
[O43] The implementation MAY ensure that the

fields in this data type are set to an appropriate
default value.

getMCMMetaDataDescriptiveText()
: String[1..1]

This method returns the value of the
mcmMetaDataDescriptiveText attribute.
[D155] If this object does not have a value for this

attribute, then a NULL string SHOULD be
returned.

setMCMMetaDataDescriptiveText
(in newStatus : String[1..1])

This method defines the value of the
mcmMetaDataDescriptiveText attribute. A single
input parameter, of type String, is supplied.
[D156] A NULL string SHOULD NOT be used.

Table 52. Operations of the MCMMetaData Class

The MCMMetaData class participates in three aggregations: MCMEntityHasMCMMetaData,
MCMInfoResourceHasMCMMetaData, and MCMHasMCMMetaDataDecorator. See sections
7.5.1, 7.11, and 7.12.6, respectively.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 152

Figure 25 shows a portion of the MCMMetaData class hierarchy. The following subsections will
use this figure to describe the classes in the MCMMetaData class hierarchy in more detail.

Figure 25. The MCMMetaData Class Hierarchy, Part 2

7.12.2 MCMRole Class Hierarchy

This section specifies the class definition of the MCMRole class and its subclasses.

7.12.2.1 MCMRole Class Definition

This is an abstract class, and specializes MCMMetadata. It represents a set of characteristics and
behaviors (also referred to as responsibilities) that an object takes on in a particular context. This
enables an object to adapt to the needs of different clients through transparently attached role
objects (as opposed to having to alter the inherent nature of the object itself). The Role Object
pattern models context-specific views of an object as separate role objects that are dynamically
attached to and removed from the core object to which the MCMRole objects are attached.

An important concept when using MCMRoles is that of a role combination. A role combination
defines the set of MCMRoles that are attached to a given object. Data mining mechanisms can be
used to optimize the number of roles, permission assignments, and other factors. This subject is
beyond the scope of this document; however, this is why the getRoleCombination method is
provided by this class.

Table 53 defines the following attributes for this class:

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 153

Attribute Name Mandatory? Description
mcmRoleName :
String[1..1]

YES This is a string attribute. It contains the name of this
Role object. The mcmRoleName attribute is different
from the mcmCommonName attribute, because the
former defines a user-friendly name that this
instance is, while the latter defines a name by which
this object is known.

[R88] The mcmRoleName attribute MUST NOT be
used as a naming attribute (i.e., to uniquely
identify an instance of this object).

[R89] The mcmRoleName attribute MUST NOT be
empty or Null.

Table 53. Attributes of the MCMRole Class

Table 54 defines following operations for this class:

Attribute Name Description

getMCMRoleName :
String[1..1]

This method returns the name of this MCMRole object. The
mcmRoleName attribute is different from the mcmCommonName
attribute, because the former defines a user-friendly name that this
instance is, while the latter defines a name by which this object is
known.

[R90] The mcmRoleName attribute MUST NOT be used as a
naming attribute (i.e., to uniquely identify an instance of this
object).

[R91] The mcmRoleName attribute MUST NOT be empty or Null
string.

setMCMRoleName
(in newRoleName :
String[1..1])

This method defines the name of this MCMRole object. The
mcmRoleName attribute is different from the mcmCommonName
attribute, because the former defines a user-friendly name that this
instance is, while the latter defines a name by which this object is
known.

[R92] The mcmRoleName attribute MUST NOT be used as a
naming attribute (i.e., to uniquely identify an instance of this
object).

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 154

[R93] The mcmRoleName attribute MUST NOT be empty or Null
string.

Table 54. Operations of the MCMRole Class

At this time, no relationships are defined for this class.

7.12.2.2 MCMPartyRole Class Definition

This is an abstract class, and specializes MCMRole. It represents a set of unique behaviors played
by an MCMParty in a given context.

[D157] Implementers SHOULD use the Role-Object pattern [3] to implement
MCMRoles.

Table 55 defines the following attributes for this class:

Attribute Name Mandatory? Description

mcmPartyRoleID
: String[1..1]

YES This is a mandatory string attribute, and contains a
unique value that enables instances of this
MCMPartyRole to be disambiguated from other
MCMPartyRoles (including MCMPartyRoles of the
same object type).

[R94] This attribute MUST NOT be used as an
objectID, since one is inherited from
MCMRootEntity.

[R95] The value of this attribute MUST NOT be a
NULL or EMPTY string.

Table 55. Attributes of the MCMPartyRole Class

Table 56 defines following operations for this class:

Attribute Name Description

getMCMParty-
RoleID : String[1..1]

This method returns the ID of this MCMPartyRole object. The
mcmRoleID attribute is different from the objectID attribute tuple
defined in MCMRootEntity, because the former defines a unique
ID that identifies this MCMPartyRole for this instance, while the
latter defines the ID by which this object is known.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 155

[R96] The mcmPartyRoleID attribute MUST NOT be used as a
naming attribute (i.e., to uniquely identify an instance of this
object).

[R97] The mcmPartyRoleID attribute MUST NOT be a NULL or
empty string.

setMCMPartyRoleID
(in newRoleID :
String[1..1])

This method defines the ID of this MCMPartyRole object. The
mcmRoleID attribute is different from the objectID attribute tuple
defined in MCMRootEntity, because the former defines a unique
ID that identifies this MCMPartyRole for this instance, while the
latter defines the ID by which this object is known.

[R98] The mcmPartyRoleID attribute MUST NOT be used as a
naming attribute (i.e., to uniquely identify an instance of this
object).

[R99] The mcmPartyRoleID attribute MUST NOT be a NULL or
empty string.

Table 56. Operations of the MCMRole Class

Note that the getMCMPartyRoleList, setMCMPartyRoleList, setMCMPartyRolePartialList,
delMCMPartyRoleList, and delMCMPartyRolePartialList operations are defined for an
MCMParty; see section 7.12.2.2.

The MCMPartyRoleDetailHasMCMContact is an association between the MCMPartyRoleDetail
association class and the MCMContact class. This association defines the set of MCMContacts
that are related to this particular MCMPartyRoleDetail object (i.e., the set of MCMParty objects
that are playing a specific MCMPartyRole). For example, this association can be used to define
the contact information for a set of MCMParty objects that are each playing a set of
MCMPartyRoles; a common use is to define the contact information for different types of
MCMBuyer and MCMSeller objects.

The multiplicity of this association is 0..* ± 0..*. This means that this association is optional (i.e.,
the ³0´ part of the 0..* cardinality). If this association is instantiated (e.g., the ³0..* cardinality on
the MCMPartyHasMCMPartyRoleDetail is greater than 0), then zero or more MCMContact
objects can be associated with this particular MCMPartyHasMCMPartyRoleDetail object. Note
that the cardinality on the part side (MCMContact) is 0..*; this enables an
MCMPartyHasMCMPartyRoleDetail object to be defined without having to define an associated
MCMContact object for it to aggregate.

The semantics of this aggregation are defined by the
MCMPartyRoleDetailHasMCMContactDetail association class. This enables the management
system to control which set of MCMParty-RoleDetail objects are associated to which set of
MCMContact objects.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 156

Note that the Policy Pattern may be used to control which specific part objects (i.e.,
MCMMetaData) are associated with which specific aggregate (i.e., MCMInformationResource)
objects, respectively, for a given context. See Figure 3 for an exemplary illustration of the Policy
Pattern. MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative,
and intent policy rules.

7.12.2.3 MCMCustomer Class Definition

MCMCustomer is a concrete class, and specializes MCMPartyRole. It represents a particular type
of MCMPartyRole that defines a set of people and/or organizations that buy, manage, or use
MCMProducts from an MCMServiceProvider. The MCMCustomer is financially responsible for
purchasing an MCMProduct. The MCMCustomer is the MCMPartyRole that is purchasing,
managing, and/or using Services from an MCMServiceProvider. This definition is based on the
definition from [13].

Table 57 defines the attributes of the MCMCustomer class.

Attribute Name Mandatory? Description
mcmCustomerStatus :
MCMCustomerStatus[1..1]

YES This attribute defines the current standing of a
customer. Values are defined by the
MCMCustomerStatus enumeration, and
include the following literals:
 0: ERROR
 1: INIT
 2: Active
 3: Restricted (active with unpaid bills)
 4: Inactive
 5: Prospective

mcmCustomerRank :
Integer[0..1]

NO This is a non-negative integer, and defines the
current business importance of this Customer.
A value of 0 means unimportant, and higher
positive values means higher importance.

Table 57. Attributes of the MCMCustomer Class

Table 58 defines following operations for this class:

Attribute Name Description

getMCMCustomerStatus ()
:
MCMCustomerStatus[1..1]

This method returns the value of the mcmCustomerStatus
attribute. The values of this attribute are defined in
theMCMCustomerStatus enumeration.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 157

setMCMCustomerStatus
(in newStatus:
MCMCustomerStatus[1..1])

This method defines the value for the mcmCustomerStatus
attribute. Valid values for this attribute are defined in the
theMCMCustomerStatus enumeration.

getMCMCustomerRank () :
Integer[1..1]

This method returns the value of the mcmCustomerRank
attribute.

setMCMCustomerRank (in
newRank : Integer[1..1])

This method defines the value for the mcmCustomerRank
attribute.

Table 58. Operations of the MCMCustomer Class

At this time, no relationships are defined for this class.

7.12.2.4 MCMServiceProvider Class Definition

MCMServiceProvider is a concrete class, and specializes MCMPartyRole. It represents a
particular type of MCMPartyRole that provides MCMProducts. This specifically includes
MCMServices. This definition is based on the definition from [1].

At this time, no attributes are defined for this class. Most attributes will likely be realized using
relationships and/or methods. For example, a query to an instance of the MCMServiceProvider
class to provide its set of different contact information will be done by using a class method, since
each contact will also use information from a subclass of MCMContact (see section 7.11.3).

At this time, no operations are defined for this class.

At this time, no relationships are defined for this class.

7.12.2.5 MCMAccessProvider Class Definition

MCMAccessProvider is a concrete class, and specializes MCMPartyRole. It represents a particular
type of MCMPartyRole that enables MCMPartyRoles (typically MCMCustomers) to gain entrance
to a network (e.g., the Internet), by using an MCMProduct. This specifically includes
MCMServices.

At this time, no attributes are defined for the MCMAccessProvider class. Most attributes will likely
be realized using relationships and/or methods. For example, a query to an instance of the
MCMAccessProvider class to provide its set of different contact information will be done by using
a class method, since each contact will also use information from a subclass of MCMContact (see
section 7.11.3).

At this time, no operations are defined for this class.

At this time, no relationships are defined for this class.

7.12.2.6 MCMPartner Class Definition

MCMPartner is a concrete class, and specializes MCMPartyRole. It represents a particular type of
MCMPartyRole that provides MCMProducts and MCMServices to the MCMServiceProvider in

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 158

order to instantiate and manage MCMService elements, such as MCMServiceComponents,
e[ternal to the Service Provider¶s Domain. This definition is based on the definition from [1].

At this time, no attributes are defined for the MCMPartner class. Most attributes will likely be
realized using relationships and/or methods. For example, a query to an instance of the
MCMPartner class to provide its set of different contact information will be done by using a class
method, since each contact will also use information from a subclass of MCMContact (see section
7.11.3).

At this time, no operations are defined for this class.

At this time, no relationships are defined for this class.

7.12.3 MCMPolicyRole Class Definition

This class is defined in the Policy Driven Orchestration specification. It is used to define the
descriptive and/or prescriptive characteristics and behavior of a given MCMPolicyRole object.

7.12.4 MCMPolicyMetaData Class Definition

This is an abstract class, and specializes MCMMetaData. It is used to define MetaData for all types
of Policy Driven Orchestration Policies (e.g., imperative, declarative, and intent).

7.12.5 MCMGeoSpatialMetaData Class Definition

This is an abstract class, and specializes MCMMetaData. It defines metadata that are applicable to
objects that have an explicit or implicit geographic meaning (e.g., they are associated with a
particular location, typically on the surface of the Earth). This class will eventually be harmonized
with all or some of the information in [12][12].

Table 59 defines the attributes of this class.

Attribute Name Mandatory? Description

mcmGeoMethod :
MCMGeoMethod[1..1] YES

This is an enumerated string attribute, and
defines the type of geolocation method used.
The values are literals in the MCMGeoMethod
enumeration. Values include:
 - 0: ERROR
 - 1: INIT
 - 2: GPS (US)
 - 3: Galileo (Europe)
 - 4: GLONASS (Russian Federation)
 - 5: Differential GPS
 - 6: Assisted GPS
 - 7: Augmented GNSS
 - 8: Enhanced GNSS

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 159

 - 9: Non-GPS Satellite Navigation
 - 10: Cellular Navigation
 - 11: WiFi Positioning
 - 12: Other Positioning System

[R100] If this attribute has a value of 0 or 1,
then this operation MUST NOT be
used in an operational manner.

mcmGeoMethodAug :
MCMGeoMethodAug[0..1] NO

This is an enumerated string attribute, and
defines the type of geolocation augmentation
used. The values are literal in the
MCMGeoMethodAug enumeration. Values
include:
- 0: ERROR
 - 1: INIT
 - 2: Satellite-Based Augmentation System
 - 3: Ground-Based Augmentation System
 - 4: Aircraft-Based Augmentation System
 - 5: NONE

[R101] If this attribute has a value of 0 or 1,
then this operation MUST NOT be
used in an operational manner.

Table 59. Attributes of the MCMGeoSpatialMetaData Class

Table 60 defines the operations of this class.

Attribute Name Description

getMCMGeoMethod() :
MCMGeoMethod[1..1]

This method returns the value of the mcmGeoMethod
attribute. Valid values for this attribute are defined in the
MCMGeoMethod enumeration.

setMCMGeoMethod(in
newGeoMethod :
MCMGeoMethod[1..1])

This method defines the value for the mcmGeoMethod
attribute. Valid values for this attribute are defined in the
MCMGeoMethod enumeration.

getMCMGeoMethodAug()
: MCMGeo-
MethodAug[1..1]

This method returns the value of the mcmGeoMethodAug
attribute. Valid values for this attribute are defined in the
MCMGeoMethodAug enumeration.

setMCMGeoMethod(in
newGeoMethodAug :
MCMGeoMethodAug[1..1])

This method defines the value for the mcmGeoMethodAug
attribute. Valid values for this attribute are defined in the
MCMGeoMethodAug enumeration.

Table 60. Operations of the MCMGeoSpatialMetaData Class

At this time, no relationships are defined for this class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 160

7.12.6 MCMMetaDataDecorator Class Definition

This is an abstract class, and specializes MCMMetaData. It defines the decorator pattern for use
with MCMMetaData. This enables all or part of one or more concrete subclasses of MCMMeta-
DataDecorator to ³wrap´ another concrete subclass of MCMMetaData.

At this time, no attributes are defined for the MCMMetaDataDecorator class.

Table 61 defines the operations of this class.

Attribute Name Description

getMCMMetaDecoratorLi
st() :
MCMMetaDataDecorator[
1..*]

This operation returns the set of MCMMetaDataDecorator
objects that are decorating this MCMMetaData object. There
are no input parameters.
[D158] If this MCMMetaData object is not decorated by any

MCMMetaDataDecorator objects, then a NULL
MCMMetaDataDecorator object SHOULD be
returned.

setMCMMetaDecoratorLis
t (in newDecoratorList :
MCMMetaDataDecorator[
1..*])

This operation defines the set of MCMMetaDataDecorator
objects that will decorate this MCMMetaData object. This
operation takes a single input parameter, called
newDecoratorList, which is of type MCMMetaDataDecorator.
This operation creates a set of aggregations between this
particular MCMMetaData object and the set of
MCMMetaDataDecorator objects identified in the input
parameter. Note that this operation first deletes any existing
MCMMetaDataDecorator objects (and their aggregations and
association classes) that decorate this MCMMetaData object,
and then instantiates a new set of MCMServiceComponent
objects; in doing so, each MCMMetaDataDecorator object is
attached to this particular MCMMetaData object by first,
creating an instance of the MCMHasMetaDataDecorator
aggregation, and second, realizing that aggregation instance
as an association class.
[D159] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMHasMetaDataDecoratorDetail association class).

setMCMMetaDecoratorPa
rtialList (in
newDecoratorList :
MCMMetaDataDecorator[
1..*])

This operation defines a set of one or more
MCMMetaDataDecorator objects that will decorate this
MCMMetaData object WITHOUT affecting any other existing
MCMMetaDataDecorator objects that are decorating this
MCMMetaData object. This operation takes a single input

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 161

parameter, called newDecoratorList, which is an array of one
or more MCMMetaDataDecorator objects. This operation
creates a set of aggregations between this particular
MCMMetaData object and the set of
MCMMetaDataDecorator objects identified in the input
parameter.
[D160] Each created aggregation SHOULD have an

association class (i.e., an instance of the
MCMHasMetaDataDecoratorDetail association class).

delMCMMetaDecoratorLi
st()

This operation deletes ALL MCMMetaDataDecorator object
instances that are decorating this MCMMetaData object. This
operation first removes the association class, and second,
removes the aggregation, between this MCMMetaData
object and each MCMMetaDataDecorator object that is
decorating this MCMMetaData object. This operation has no
input parameters. This operation does not delete any of the
MCMMetaDataDecorator objects; it simply disconnects them
from the MCMMetaData that they were decorating.

delMCMMetaDecoratorPa
rtialList (in
newDecoratorList :
MCMMetaDataDecorator
[1..*])

This operation deletes a set of MCMMetaDataDecorator
objects that are decorating this particular MCMMetaData
object. This operation takes a single input parameter, called
newDecoratorList, which is an array of one or more
MCMMetaDataDecorator objects. This operation first
removes the association class and second, removes the
aggregation, between each MCMMetaDataDecorator object
specified in the input parameter and this MCMMetaData
object.

[R102] All other aggregations between this MCMMetaData
object and other MCMMetaDataDecorator objects that
are not specified in the input parameter MUST NOT
be affected.

Table 61. Operations of the MCMMetaDataDecorator Class

At this time, a single aggregation is defined for MCMMetaDataDecorator. This aggregation is
named MCMHasMetaDataDecorator, and defines the set of concrete subclasses of MCMMeta-
DataDecorator that wrap (or decorate) a concrete subclass of MCMMetaData. The multiplicity of
this aggregation is 0..1 ± 0..*. This means that this aggregation is optional (i.e., the ³0´ part of the
0..1 cardinalit\). If this aggregation is instantiated (e.g., the ³1´ part of the 0..1 cardinalit\), then
zero or more concrete subclasses of MCMMetaDataDecorator can decorate (i.e., ³wrap´) this
particular concrete subclass of MCMMetaData. Note that the cardinality on the part side
(MCMMetaData) is 0..*; this enables an MCMMetaData object to be defined without having to
define an associated MCMMetaDataDecorator object.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 162

The semantics of this aggregation are defined by the MCMHasMetaDataDecoratorDetail
association class. This enables the management system to control which set of concrete subclasses
of MCMMetaDataDecorator wrap this particular MCMMetaData. The Policy Pattern may be used
to control which specific MCMMetaDataDecorator objects wrap a given MCMMetaData for a
given context. See Table 3 for an exemplary illustration of the Policy Pattern. Note that
MCMPolicyStructure is an abstract class that is the superclass of imperative, declarative, and intent
policy rules.

7.12.6.1 MCMCapability Class Definition

This is an abstract class, and specializes MCMMetaDataDecorator. It represents a set of features
that are available to be used from an MCMEntity. These features may include all, or a subset, of
the available features of an MCMEntity. These features may, but do not have to, be used.

At this time, no attributes are defined for the MCMCapability class. Most attributes will likely be
realized using relationships and/or methods. For example, the set of mandatory, recommended,
and optional capabilities of a given MCMManagedEntity can be gathered and sorted by using an
appropriate method.

At this time, no relationships are defined for this class.

At this time, no relationships are defined for this class.

7.12.6.2 MCMNetworkFunction

This section describes the concept of a Network Function. This was originally defined by ETSI
NFV, but has been modified to make this concept both more flexible and generic as well as more
robust (e.g., in NFV, it is not explicitly modeled).

7.12.6.2.1 Background

This class is derived from the concept of a Network Function as defined in ETSI NFV [15]:

Network Function (NF): functional block within a network infrastructure that has well-defined
external interfaces and well-defined functional behavior.

In control theory, a system is made up of functional blocks. A functional block describes a part, or
module, of a system. Each functional block defines a collection of structural and/or behavioral
features of a module. A transfer function defines the set of outputs for a functional block given a
set of inputs and a state. Originally, NFV defined a NetworkFunction as a transfer function. This
is no longer true.

7.12.6.2.2 Rationale for Changing the Definition of a NetworkFunction

There are three main reasons for not using the ETSI definition of a NetworkFunction:

o The ETSI NFV information model does not define a superclass for a
NetworkFunction

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 163

o In ETSI NFV, the concept of a NetworkFunction is limited to a small number of use
cases; we want a NetworkFunction to behave as defined in [15], and be used to
represent the behavior defined by the combination of a state and a given set of inputs

o The ETSI NFV information model does not specifically model a NetworkFunction

Hence, we have decided to create a new MCM class to better model what a NetworkFunction is.

Accordingl\, the name of this class is prefi[ed with ³MCMMEF´, to denote that this is the MEF¶s
interpretation of what a NetworkFunction should be.

Note also that, due to this definition, MCMMEFNetworkFunctions may be attached to any
MCMManagedEntity. This is not true in NFV.

Finally, we have modeled an MCMMEFNetworkFunction as a type of MCMMetaData. This is
because:

o A NetworkFunction is not required to be used
o A NetworkFunction may change its behavior, adding or removing capabilities

dynamically at runtime

Therefore, we have modeled an MCMMEFNetworkFunction as a subclass of MCMCapability
(since it represents the capabilities of an MCMEntity), which is in turn a subclass of
MCMMetaDataDecorator (since it can be dynamically changed at runtime).

7.12.6.2.3 MCMMEFNetworkFunction Class Definition

This is a concrete class, and specializes MCMCapability. It represents the features and behavior
of an MCMManagedEntity that may be used for a given set of external interfaces while in a
particular state. It may specify attributes and methods, as well as define nested
MCMMEFNetworkFunctions. It may also enumerate the actors that use it.

At this time, no attributes are defined for the MCMMEFNetworkFunction class.

At this time, no operations are defined for the MCMMEFNetworkFunction class.

At this time, no relationships are defined for the MCMMEFNetworkFunction class.

7.12.6.3 MCMMEFDescriptor

This section describes the concept of a Descriptor. This was originally defined by ETSI NFV, but
has been modified to make this concept both more flexible and generic as well as more robust
(e.g., in NFV, there are many different types of Descriptors, but each is modeled as an individual
object and does not have a superclass).

7.12.6.3.1 Background

A Descriptor is loosel\ described as a ³template´, as in this e[ample from [15]:

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 164

network service descriptor: template that describes the deployment of a Network Service
including service topology (constituent VNFs and the relationships between them, Virtual
Links, VNF Forwarding Graphs) as well as Network Service characteristics such as SLAs and
any other artefacts necessary for the Network Service on-boarding and lifecycle management
of its instances

There are a large number of descriptors defined in ETSI NFV.

7.12.6.3.2 Rationale for Changing the Defintiion of a Descriptor

First, there is a large amount of commonality, in both function and purpose, among the many
different types of Descriptors used in ETSI NFV. Unfortunately, the NFV information model treats
them as individual objects with no common inheritance. This needs to be fixed to follow accepted
object-oriented practice, and to make the models more robust and easier to maintain.

Second, many NFV descriptors contain other NFV descriptors ± this is another reason to enforce
inheritance and represent descriptors using a class hierarchy. In addition, the use of various
patterns, such as the composite pattern [2][4], would significantly simplify the resulting design as
well as improve its robustness and decrease its fragility.

Third, some types of NFV descriptors contain instance-specific information (e.g., link data) that is
fragile and will change during normal operations (e.g., a VM migration). In order to be compatible
with this approach, the MCM models descriptors as a type of metadata that can be dynamically
attached and detached using the decorator pattern.

Fourth, many types of NFV descriptors combine metadata with other types of data. The MCM
separates these two types of data into separate class hierarchies (e.g., MCMEntity vs
MCMMetaData), but enables them to be associated with each other. This provides a better and
more consistent implementation approach.

Finally, descriptors are used inconsistently in NFV. While NFV is basically a resource-oriented
model, not all resources have descriptors. In addition, descriptors should be able to be used for
other entities, such as Services. This is the prime motivation for subclassing MCMMEFDescriptor
from MCMCapability (which is a type of MCMMetaDataDecorator ± that way, a Descriptor can
change dynamically to suit the needs of what it is describing).

7.12.6.3.3 MCMMEFDescriptor Class Definition

An MCMMEFDescriptor is a set of related metadata that can be applied to describe and/or
prescribe the characteristics and behavior of an MCMManagedEntity. Note that this class can be
used in conjunction with an appropriate subclass of an MCMDefinition class to provide a
completely generic mechanism for defining the salient characteristics and behavior of a Descriptor.
In addition, the flexibility of the MCM enables the application developer to tailor application-
specific definitions of Descriptors to Products, Services, and/or Resources. For example, the
MCMMEFDescriptor class can be attached to an MCMService class, which is defined by a set of
MCMDefinitions.

There are several significant problems with the NFV definition of a descriptor. First, it is restricted
to the deployment view, yet is often used as part of the design process. Second, it combines

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 165

metadata and non-metadata information. For example, the definition of a VNF Descriptor (VNFD)
in NFV is a ³configuration template that describes a VNF in terms of its deployment and
operational behavior, and is used in the process of VNF on-boarding and managing the lifecycle
of a VNF instance´. Hence, the name of this class is prefi[ed with ³MCMMEF´, to denote that
this is the MEF¶s interpretation of what a Descriptor should be.

At this time, no attributes are defined for the MCMMEFDescriptor class.

At this time, no operations are defined for the MCMMEFDescriptor class.

At this time, no relationships are defined for the MCMMEFDescriptor class.

7.12.6.4 MCMVersion Class Definition

This is a concrete class that specializes MCMMetaDataDecorator. It defines versioning
information, in the form of metadata, that can be added to an MCMManagedEntity. This enables
all or part of a standardized description and/or specification of version information for a given
MCMManagedEntity to be easily changed at runtime by wrapping an object instance of the
MCMManagedEntity class (or its subclass) with all or part of this object.

Version information is defined in a generic format based on the Semantic Versioning 2.0.0
Specification [14] as follows:

 <major>.<minor>.<patch>[<pre-release>][<build-metadata>]

where the first three components (major, minor, and patch) MUST be present, and the latter two
components (pre-release and build-metadata) MAY be present. A version number MUST take the
form <major>.<minor>.<patch>, where <major>, <minor>, and <patch> are each non-negative
integers that MUST NOT contain leading zeros.

In addition, the value of each of these three elements MUST increase numerically. In this
approach:

[R103] mcmVersionMajor denotes a new release; this number MUST be incremented
when either changes are introduced that are not backwards-compatible, and/or
new functionality not previously present is introduced

[R104] mcmVersionMinor denotes a minor release; this number MUST be incremented
when new features and/or bug fixes to a major release that are backwards-
compatible are introduced, and/or if any features are marked as deprecated

[R105] mcmVersionPatch denotes a version that consists ONLY of bug fixes, and
MUST be incremented when these bug fixes are NOT backwards-compatible

When multiple versions exist, the following rules define their precedence:

[R106] Precedence MUST be calculated by separating the version into major, minor,
patch, and pre-release identifiers, in that order. Note that build-metadata is NOT
used to calculated precedence.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 166

[R107] Precedence MUST be determined by the first difference when comparing each
of these identifiers, from left to right, as follows:

a) Major, minor, and patch versions are always compared numerically (e.g.,
1.0.0 < 2.0.0 < 2.1.0 < 2.1.1)

b) When major, minor, and patch are equal, a pre-release version has LOWER precedence
than a normal version (e.g., 1.0.0-alpha < 1.0.0)

c) Precedence for two pre-release versions with the same major, minor, and patch version
MUST be determined by comparing each dot separated identifier from left to right until
a difference is found as follows:

i) identifiers consisting only of digits are compared numerically and identifiers with
letters and/or hyphens are compared lexically in ASCII sort order

ii) Numeric identifiers always have lower precedence than non-numeric identifiers

iii) A larger set of pre-release fields has a higher precedence than a smaller set, if all of
the preceding identifiers are equal

Example:

 1.0.0-alpha < 1.0.0-alpha.1 < 1.0.0-alpha-beta < 1.0.0-beta < 1.0.0-beta.2 < 1.0.0-rc.1 < 1.0.0.

Table 62 defines the attributes of the MCMVersion class.

Attribute Name Mandatory? Description

mcmVersionMajor :
String[1..1] YES

This is a mandatory string attribute, and
contains a string representation of an integer
that is greater than or equal to zero. It
indicates that a significant increase in
functionality is present in this version.
Improvements to each starting initial version,
before they are released to the public, are
denoted by incrementing the minor and
patch version numbers.
[O44] A major version MAY indicate that

this version has changes that are NOT
backwards-compatible.

[O45] The lack of backwards-compatibility
MAY be denoted using attached
MCMMetaData and/or using the
mcmVersionBuildMetaData class
attribute.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 167

[R108] The special string "0.1.0" is for initial
development and MUST NOT be
considered stable.

[R109] The major version X (i.e., X.y.z, where
X > 0) MUST be incremented if any
backwards incompatible changes are
introduced.

[O46] A major version MAY include minor
and patch level changes.

[R110] The minor and patch version numbers
MUST be reset to 0 when the major
version number is incremented.

mcmVersionMinor :
String[1..1] YES

This is a mandatory string attribute, and
contains a string representation of an integer
that is greater than or equal to zero. A minor
version indicates that this release contains a
set of features and/or bug fixes that are
backwards-compatible.

[R111] A minor version indicates that this
release contains a set of features and/or
bug fixes that MUST be backwards-
compatible.

[R112] The minor version Y (i.e., x.Y.z,
where x > 0) MUST be incremented if
new, backwards-compatible changes
are introduced.

[R113] The minor version MUST be
incremented if any features are marked
as deprecated.

[O47] The minor version MAY be
incremented if new functionality or
improvements are introduced.

[O48] The minor version MAY include
patch level changes.

[R114] The patch version number MUST be
reset to 0 when the minor version
number is incremented.

mcmVersionPatch :
String[1..1] YES This is a mandatory string attribute, and

contains a string representation of an integer

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 168

that is greater than or equal to zero. A patch
version indicates that this version ONLY
contain bug fixes. A bug fix is defined as an
internal change that fixes incorrect behavior.

[R115] A patch version indicates that this
version MUST ONLY contain bug
fixes.

[R116] The patch version Z (i.e., x.y.Z, where
x > 0) MUST be incremented if new,
backwards-compatible changes are
introduced.

mcmVersionPreRelease :
String[0..1] NO

This is an optional string attribute, and
contains a string defining the pre-release
version. A pre-release version is denoted by
appending a hyphen and a series of dot-
separated identifiers immediately following
the patch version. A pre-release version
indicates that the version is unstable and
might not satisfy the intended compatibility
requirements as denoted by its associated
normal version. Pre-release versions have a
lower precedence than the associated normal
version. Examples include: 1.0.0-alpha, 1.0.0-
alpha.1, 1.0.0-0.3.7, and 1.0.0-x.7.z.92.

[R117] Identifiers MUST comprise only
ASCII alphanumerics and a hyphen.

[R118] Identifiers MUST NOT be empty.

[R119] Numeric identifiers MUST NOT
include leading zeroes.

mcmVersionBuildMetaData
: String[0..1] NO

This is an optional string attribute, and
contains a string defining the build metadata.
Build metadata is denoted by appending a
plus sign and a series of dot-separated
identifiers immediately following the patch or
pre-release version. Examples include: 1.0.0.-
alpha+1, 1.0.0+20130313144700, and
1.0.0-beta+exp.sha.5114f85.

[R120] Identifiers MUST be made up of only
ASCII alphanumerics and a hyphen.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 169

[R121] Identifiers MUST NOT be empty.
[D161] Build metadata SHOULD be ignored

when determining version precedence.

Table 62. Attributes of the MCMVersion Class

Table 63 defines the following operations for this class.

Operation Name Description

getMCMVersionMajor() :
String[1..1]

This method returns the value of the
mcmVersionMajor attribute. This value is a string
representation of an integer that is greater than or
equal to zero. It indicates that a significant increase in
functionality is present in this version. Improvements
to each starting initial version, before they are
released to the public, are denoted by incrementing
the minor and patch version numbers.

[R122] The value of this attribute MUST NOT be a
NULL or an empty string value.

setMCMVersionMajor(in
newVersionMajor : String[1..1])

This method defines the value of the
mcmVersionMajor attribute. A single input parameter,
of type String, is provided. This value is a string
representation of an integer that is greater than or
equal to zero. It indicates that a significant increase in
functionality is present in this version. Improvements
to each starting initial version, before they are
released to the public, are denoted by incrementing
the minor and patch version numbers.

[R123] The value of this attribute MUST NOT be a
NULL or an empty string value.

getMCMVersionMinor() :
String[1..1]

This method returns the value of the
mcmVersionMinor attribute. This value a string
representation of an integer that is greater than or
equal to zero. A minor version indicates that this
release contains a set of features and/or bug fixes that
are backwards-compatible.

[R124] The value of this attribute MUST NOT be a
NULL or an empty string value.

setMCMVersionMinor(in
newVersionMinor : String[1..1])

This method defines the value of the
mcmVersionMinor attribute. A single input

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 170

parameter, of type String, is provided. This value is a
string representation of an integer that is greater than
or equal to zero. A minor version indicates that this
release contains a set of features and/or bug fixes that
are backwards-compatible.

[R125] The value of this attribute MUST NOT be a
NULL or an empty string value.

getMCMVersionPatch() :
String[1..1]

This method defines the value of the
mcmVersionPatch attribute. This value is a string
representation of an integer that is greater than or
equal to zero. A patch version indicates that this
version ONLY contain bug fixes. A bug fix is defined as
an internal change that fixes incorrect behavior.

[R126] The value of this attribute MUST NOT be a
NULL or an empty string value.

setMCMVersionPatch(in
newVersionPatch : String[1..1])

This method defines the value of the
mcmVersionPatch attribute. A single input parameter,
of type String, is provided. This value is a string
representation of an integer that is greater than or
equal to zero. A patch version indicates that this
version ONLY contain bug fixes. A bug fix is defined as
an internal change that fixes incorrect behavior.

[R127] The value of this attribute MUST NOT be a
NULL or an empty string value.

getMCMVersionPreRelease() :
String[1..1]

This method defines the value of the
mcmVersionPreRelease attribute. This value is a string
defining the pre-release version. A pre-release version
is denoted by appending a hyphen and a series of dot-
separated identifiers immediately following the patch
version. A pre-release version indicates that the
version is unstable and might not satisfy the intended
compatibility requirements as denoted by its
associated normal version. Pre-release versions have a
lower precedence than the associated normal version.
Examples include: 1.0.0-alpha, 1.0.0-alpha.1, 1.0.0-
0.3.7, and 1.0.0-x.7.z.92.

[R128] Identifiers MUST NOT be empty.

[R129] The value of this attribute MUST NOT be a
NULL or an empty string value.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 171

setMCMVersionPreRelease(in
newVersionPreRelease :
String[1..1])

This method defines the value of the
mcmVersionPreRelease attribute. A single input
parameter, of type String, is provided. This value is a
string defining the pre-release version. A pre-release
version is denoted by appending a hyphen and a
series of dot-separated identifiers immediately
following the patch version. A pre-release version
indicates that the version is unstable and might not
satisfy the intended compatibility requirements as
denoted by its associated normal version. Pre-release
versions have a lower precedence than the associated
normal version. Examples include: 1.0.0-alpha, 1.0.0-
alpha.1, 1.0.0-0.3.7, and 1.0.0-x.7.z.92.

[R130] Identifiers MUST NOT be empty.

[R131] The value of this attribute MUST NOT be a
NULL or an empty string value.

getMCMVersionBuildMetaData :
String[1..1]

This method defines the value of the
mcmVersionBuildMetaData attribute. This value is a
string defining the build metadata. Build metadata is
denoted by appending a plus sign and a series of dot-
separated identifiers immediately following the patch
or pre-release version. Examples include: 1.0.0.-
alpha+1, 1.0.0+20130313144700, and
1.0.0-beta+exp.sha.5114f85.

[R132] Identifiers MUST be made up of only ASCII
alphanumerics and a hyphen.

[R133] Identifiers MUST NOT be empty.

[R134] The value of this attribute MUST NOT be a
NULL or an empty string value.

setMCMVersionBuildMetaData(in
newVersionBuild : String[1..1])

This method defines the value of the
mcmVersionBuildMetaData attribute. A single input
parameter, of type String, is provided. This value is a
string defining the build metadata. Build metadata is
denoted by appending a plus sign and a series of dot-
separated identifiers immediately following the patch
or pre-release version. Examples include: 1.0.0.-
alpha+1, 1.0.0+20130313144700, and
1.0.0-beta+exp.sha.5114f85.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 172

[R135] Identifiers MUST be made up of only ASCII
alphanumerics and a hyphen.

[R136] Identifiers MUST NOT be empty.

[R137] The value of this attribute MUST NOT be a
NULL or an empty string value.

Table 63. Operations of the MCMVersion Class

At this time, no relationships are defined for this class.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 173

8 MEF Types

This section will list the common data types and enumerations defined for the MCM model only.

8.1 Introduction

The MEF T\pes additions for the MCM project are defined in a folder labelled ³MCM´ in the
MEF_Types GitHub project. There are currently eight enumerations, as shown in Figure 26 below.

Figure 26. MCM Enumerations

8.2 MCMAdminState

This enumeration defines the set of states for what the IETF and ITU-T call "AdminStatus". Note
that the MCM version extends both of these definitions. The enumeration literals are defined in
Table 64.

Enum Value Literal Name Description

0 ERROR

This literal indicates that an error has occured.

[R138] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state returns to 2.

1 INIT

This literal indicates that this object is ready to be
initialized.

[R139] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state changes to 2.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 174

2 ENABLED-
_FOR_USE

This literal indicates that the adminState of this
MCMManagedEntity object is currently enabled for
normal operation and operating correctly. The adminState
defines the current ability of this MCMManagedEntity to
communicate with and respond to service requests from
other MCMManagedEntity objects.

3 LOCKED

This literal indicates that the adminState of this
MCMManagedEntity object is currently prohibited from
being used. The adminState defines the current ability of
this MCMManagedEntity to communicate with and
respond to service requests from other
MCMManagedEntity objects.

[R140] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state returns to 2.

4 IN_TEST

This literal indicates that the adminState of this
MCMManagedEntity object is currently only available in
test mode.

[R141] This state means that the associated
MCMManagedEntity MUST only be used in a
testing manner until the state returns to 2.

5 UNKNOWN

This literal indicates that the adminState of this
MCMManagedEntity object is currently unknown (e.g.,
the management system has not been able to establish
communications with it).

[R142] This state means that the associated
MCMManagedEntity MUST only be used in a
testing manner until the state returns to 2.

Table 64. AdminState Enumeration Definition

8.3 MCMCustomerStatus

This is a mandatory enumeration that defines the current business standing (e.g., active, inactive,
prospective) of a customer. The enumeration literals are defined in Table 65.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 175

Enum Value Literal Name Description

0 ERROR

This literal indicates that an error has occured.

[R143] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state returns to 2.

1 INIT

This literal indicates that this object is ready to be
initialized.

[R144] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state changes to 2.

2 ACTIVE
This literal indicates that this Customer is in good
standing (i.e., is currently doing business with this
organization and has no delinquencies).

3 RESTRICTED
This literal indicates that this Customer is Active (i.e., is
currently doing business with this organization), but has
unpaid bills.

4 INACTIVE
This literal means that this Customer was a previous
Customer, but is not currently doing business with this
organization.

5 PROSPECTIVE This literal means that this is a prospective Customer, and
hence, may receive special promotions.

Table 65. MCMCustomer Enumeration Definition

8.4 MCMEntityEnable

This is an enumeration that is used for MCMMetaData classes. whether the MCMEntity that this
MCMMetaData object refers to is enabled for normal operation or not. The enumeration literals
are defined in Table 66.

Enum Value Literal Name Description

0 ERROR

This literal indicates that an error has occured.

[R145] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state returns to 2.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 176

1 INIT

This literal indicates that this object is ready to be
initialized.

[R146] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state changes to 2.

2 ENABLED-
_FOR_ALL

This literal indicates that the MCMEntity object that this
MCMMetaData object refers to is enabled for normal
operation.

3
ENABLED-
FOR_TEST-
_ONLY

This literal indicates that the MCMEntity object that this
MCMMetaData object refers to is enabled only for testing
operations.

[R147] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state returns to 2.

4 DISABLED

This literal indicates that the MCMEntity object that this
MCMMetaData object refers to is disabled for normal
operation.

[R148] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state returns to 2.

5 UNKNOWN

This literal indicates that the state of the MCMEntity
object that this MCMMetaData object refers to is
currently unknown (e.g., the management system has not
been able to establish communications with it).

[R149] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state returns to 2.

Table 66. MCMEntityEnable Enumeration Definition

8.5 MCMGeoMethod

This is an enumeration that defines the type of Geocoding Method that is currently being used by
this MCMLocation. The enumeration literals are defined in Table 67.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 177

Enum
Value

Literal Name Description

0 ERROR

This literal indicates that an error has
occured.

[R150] This state means that the associated
MCMManagedEntity MUST
NOT be used in an operational
manner until the state returns to 2.

1 INIT

This literal indicates that this object is
ready to be initialized.

[R151] This state means that the associated
MCMManagedEntity MUST
NOT be used in an operational
manner until the state changes to 2.

2 GPS

This literal indicates that GPS (i.e., the
Global Positioning System) is being used.
The GPS is owned by the United States
government, and is a GNSS that provides
geolocation and time information to a GPS
receiver whenever there is an unobstructed
line of sight to 4 or more GPS satellites.

3 Galileo

Galileo is a Global Navigation Satellite
System created by the European Union by
the European GNSS Agency. Lower-
precision capabilities are available to
everyone;
higher-precision capabilities are only for
commercial users.

4 GLONASS

GLONASS is a GNSS that provides an
alternative to the GPS system, and is
owned by the Russian Federal Space
Agency. It consists of a lower-accuracy
service
available to everyone and an obfuscated
service available only to authorized users.

5 Differential_-GPS

A Differential GPS is an enhanced GPS
that provides improved accuracy by at
least an order of magnitude, and in some
cases, more than 2 orders of magnitude.
The enhancedment uses a network of fixed
ground-based reference stations to
broadcast the differential (i.e., the
differential measurement) between the
location

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 178

provided by the GPS and the known
location, and is typically broadcast over
radio frequencies.

6 Assisted_
-GPS

Assisted GPS is a GPS that provides a
significant improvement to the startup
performance of a GPS. The assistance can
come in different forms, such as by using
Mobile Stations information to acquire
GPS satellites more quickly, or by the use
of Cell Towers to calculate enhanced
location information.

7 LOCAL_POSITIONING_SYSTEM

A positioning system that only works for a
fixed area. It uses known beacons at
known fixed locations. Beacons can be a
mix of base stations, Wi-Fi, radio towers,
and similar sources. Three or more such
beacons are required.

8 HYBRID_
POSITIONING_-SYSTEM

A positioning system that uses a
conbination of different positioning
technologies, such as GPS plus a local
positioning system technology. This type
of system
enhances GPS in areas that it has
performance problems (e.g., between tall
buildings or underground).

9 OTHER_POSITION-
ING_SYSTEM

A positioning system that is not one of the
above systems.

Table 67. MCMGeoMethod Enumeration Definition

8.6 MCMGeoMethodAug

This is an enumeration that defines the type of Geocoding Method Augmentation that is currently
being used by this MCMLocation. The enumeration literals are defined in Table 68.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 179

Enum
Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

[R152] This state means that the associated
MCMManagedEntity MUST NOT be used in
an operational manner until the state returns to
2.

1 INIT

This literal indicates that this object is ready to be
initialized.

[R153] This state means that the associated
MCMManagedEntity MUST NOT be used in
an operational manner until the state changes
to 2.

2 SATELLITE_BASED

This type of augmentation uses additional satellites. It
typically is done on a global positioning system,
though it can be applied to local positioning systems
as well. It works in conjunction with ground-based
messages to provide signal correction for more
accurate location information.

3 GROUND_BASED
This type of augmentation provides differential GPS
corrections, typically near airport. It typically uses
Low Frequency communication.

4 AIRCRAFT_-BASED
This type of augmentation provides different
measurements from airborne sensors being combined
to improve location accuracy and navigation.

5 NONE This value means that no additional augmentation is
provided.

Table 68. MCMGeoMethodAug Enumeration Definition

8.7 MCMMetaDataEnableStatus

This is an optional enumeration that defines whether the MCMEntity that this MCMMetaData
object refers to is enabled for normal operation or not. The enumeration literals are defined in
Table 69.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 180

Enum
Value

Literal Name Description

0 ERROR

This literal indicates that an error has occured.

[R154] This state means that the associated
MCMManagedEntity MUST NOT be used in
an operational manner until the state returns to
2.

1 INIT

This literal indicates that this object is ready to be
initialized.

[R155] This state means that the associated
MCMManagedEntity MUST NOT be used in
an operational manner until the state changes
to 2.

2 ENABLED-
_FOR_ALL

This literal indicates that the MCMMetaData object is
enabled for normal operation.

3 ENABLED-
_FOR_TEST_ONLY

This literal indicates that the MCMMetaData object is
enabled only for test operations.

[R156] This state means that the associated
MCMManagedEntity MUST only be used in a
testing manner until the state returns to 2.

4 DISABLED

This literal indicates that the MCMMetaData object is
disabled for normal operation.

[R157] This state means that the associated
MCMManagedEntity MUST only be used in a
testing manner until the state returns to 2.

5 UNKNOWN

This literal indicates that the state of this
MCMMetaData object is currently unknown (e.g., the
management system has not been able to establish
communications with it).

[R158] This state means that the associated
MCMManagedEntity MUST only be used in a
testing manner until the state returns to 2.

Table 69. MCMMetaDataEnableStatus Enumeration Definition

8.8 MCMOperState

This is a mandatory enumeration that defines the current business standing (e.g., active, inactive,
prospective) of a customer. The enumeration literals are defined in Table 70.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 181

Enum
Value

Literal Name Description

0 ERROR

This literal indicates that an error has
occured.

[R159] This state means that the
associated MCMManagedEntity
MUST NOT be used in an
operational manner until the state
returns to 2.

1 INIT

This literal indicates that this object is
ready to be initialized.

[R160] This state means that the
associated MCMManagedEntity
MUST NOT be used in an
operational manner until the state
changes to 2.

2 INSTALLED_AND_-
OPERATING_CORRECTLY

This literal indicates that the operational
state of this MCMManagedEntity object
is currently installed and operational.

3 INSTALLED_AND_-
NOT_OPERATING_CORRECTLY

This literal indicates that the operational
state of this MCMManagedEntity object
currently has one or more pending alarms
that have not
been cleared.

[R161] This state means that the
associated MCMManagedEntity
MUST NOT be used in an
operational manner until the state
changes to 2.

4 ENABLED_FOR_-USE

This literal indicates that this
MCMManagedEntity object is currently
enabled for normal operation, but is not in
an operational state.

[R162] This state means that the
associated MCMManagedEntity
MUST NOT be used in an
operational manner until the state
changes to 2.

5 INSTALLED_BUT_-
NOT_OPERATING

This literal indicates that the operational
state of this MCMManagedEntity object

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 182

is in a shutdown, powered off, or similar
state, and cannot be used.

[R163] This state means that the
associated MCMManagedEntity
MUST NOT be used in an
operational manner until the state
changes to 2.

6 INSTALLATION_-IN_PROCESS

This literal indicates that the operational
state of this MCMManagedEntity object
is currently being installed (i.e.,
installation is not yet
finished).

[R164] This state means that the
associated MCMManagedEntity
MUST NOT be used in an
operational manner until the state
changes to 2.

7 NOT_INSTALLED

This literal indicates that the operational
state of this MCMManagedEntity object
is not installed.

[R165] This state means that the
associated MCMManagedEntity
MUST NOT be used in an
operational manner until the state
changes to 2.

8 IN_TEST

This literal indicates that the operational
state of this MCMManagedEntity object
is in a test mode.

[R166] This state means that the
associated MCMManagedEntity
MUST only respond to testing
commands and communication.

[R167] This state means that the
associated MCMManagedEntity
MUST NOT be used in an
operational manner until the state
changes to 2.

9 LOCKED
This literal indicates that the operational
state of this MCMManagedEntity object
is currently prohibited from being used.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 183

[R168] This state means that the
associated MCMManagedEntity
MUST NOT be used in an
operational manner until the state
changes to 2.

10 UNKNOWN

This literal indicates that the operational
state of this MCMManagedEntity object
is currently unknown (e.g., the
management system has not been able to
establish communications with it).

[R169] This state means that the
associated MCMManagedEntity
MUST NOT be used in an
operational manner until the state
changes to 2.

Table 70. MCMOperState Enumeration Definition

8.9 MCMProductOrderType

This enumeration is defined in the MCM. It is the beginning of a list of different MEF Products
that can be purchased by an MCMBuyer. The enumeration literals are defined in Table 71.

Enum Value Literal Name Description

0 ERROR

This literal indicates that an error has occured.

[R170] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state returns to 2.

1 INIT

This literal indicates that this object is ready to be
initialized.

[R171] This state means that the associated
MCMManagedEntity MUST NOT be used in an
operational manner until the state returns to 2.

2 UNI_PRODUCT This literal indicates that this is an order for a UNI
Product.

3
ACCESS_-
ELINE_-
PRODUCT

This literal indicates that this is an order for an Access E-
Line Product.

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 184

Table 71. MCMProductOrderType Enumeration Definition

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 185

9 References

[1] MEF Forum, Lifecycle Service Orchestration: Reference Architecture and Framework,
MEF 55, March 2016

[2] Gamma, E., Helm, R. Johnson, R., Vlissides, J., ³Design Patterns:
Elements of Reusable Object-Oriented Software´, Addison-Wesley, Nov, 1994.
ISBN 978-0201633610

[3] Blumer, D. Riehle, W. Siberski, M. Wulf, ³The Role Object Pattern´, Proceedings of
the 1997 Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA '97), ACM Press, 1997, Page 218-228

[4] Riehle, D., ³Composite Design Patterns´, Proceedings of the 1997 Conference on
Object-Oriented Programming Systems, Languages and Applications (OOPSLA '97),
ACM Press, 1997, Page 218-228

[5] Liskov, B.H., Wing, J.M., ³A Behavioral Notion of subt\ping´, ACM Transactions on
Programming languages and Systems 16 (6): 1811 - 1841, 1994

[6] Martin, R.C., "Agile Software Development, Principles, Patterns, and Practices",
Prentice-Hall, 2002, ISBN: 0-13-597444-5

[7] Bradner, S., ³Ke\ words for use in RFCs to Indicate Requirement Levels´, BCP 14,
RFC 2119, March 1997

[8] Meyer, B., "Object-Oriented Software Construction´, Prentice Hall, second edition,
1997 ISBN 0-13-629155-4

[9] Schmidt, D.C., ³Model-Driven Engineering´, IEEE Computer, 2006

[10] Object Management Group, OMG Unified Modeling Language TM (OMG UML),
Version 2.5.1, December 2017.

[11] Fowler, M., Rice, D., Foemmel, M., Hieatt, E., Mee, R., Stafford, R., ³Patterns of
Enterprise Application Architecture´, Addison-Wesley, November, 2002

[12] ISO, ³Geographic Information ± Metadata´, ISO 19115:2113

[13] ATIS and MEF, ³Ethernet Ordering Technical Specification ± Business Requirements
and Use Cases´, MEF57/J-Spec-001.1 Joint Standard, December 2018

[14] https://semver.org/

[15] ETSI, ³ETSI GS NFV 003 v1.3.1; Network Functions Virtualisation; Terminolog\ for
Main Concepts in NFV´, Januar\ 2018

[16] Internet Engineering Task Force RFC 8174, ³Ambiguity of Uppercase vs Lowercase in
RFC 2119 Key Words´, Ma\ 2017

https://semver.org/

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 186

Appendix A Basic Mapping between the MCM and TMF Models

The following table defines a simplified association between concrete MCM classes and those
used in TMF625 (TMF API Data Model, version 16.0.1, which is the current latest release). This
mapping will be detailed and enhanced in a future release of the MCM.

MCM Concrete Class Equivalent TMF Class Comments

MCMContact Contact
Significant semantic differences
(e.g., MCMContact is an
MCMInformationResource)

MCMCatalog Catalog

Significant semantic differences
(e.g., MCMCatalog aggregates
MCMCatalogItems, which can be
any type of MCMManagedEntity;
contact info for Catalogs is
significantly different)

MCMCatalogItem No Equivalent No Equivalent

MCMCustomer Customer

Significant semantic differences
(e.g., this uses the Role-Object
pattern, TMF doesn¶t; compliant
with MEF57.1, TMF isn¶t).

MCMServiceProvider No Equivalent No Equivalent
MCMAccessProvider No Equivalent No Equivalent

MCMPartner
PartnershipType and
RoleType and unnamed
composition

Significant semantic differences
(e.g., MCMPartner uses the Role-
Object pattern; TMF625 doesn¶t
have a Partner class)

MCMBuyer
PartnershipType and
RoleType and unnamed
composition

TMF625 does not define this as a
dedicated class, as required in
MEF57.1

MCMSeller
PartnershipType and
RoleType and unnamed
composition

TMF625 does not define this as a
dedicated class, as required in
MEF57.1

MCMPerson Individual

Significant semantic differences
(e.g., MCMPerson is part of a
Composite pattern; not used in
TMF)

MCMOrganization Organization Same as MCMPerson
MCMProductFeature No Equivalent No Equivalent
MCMServiceFeature No Equivalent No Equivalent
MCMResourceFeature No Equivalent No Equivalent
MCMBusinessTerm No Equivalent No Equivalent

 MEF Core Model

MEF 78.1 © MEF Forum 2020. Any reproduction of this document, or any portion thereof, shall contain the following
statement: "Reproduced with permission of MEF Forum." No user of this document is authorized to modify
any of the information contained herein.

Page 187

MCMProductOffer ProductOffering
Requires use of the TMF
specification pattern, which is not
supported in the MCM

MCMResourceOffer No Equivalent No Equivalent
MCMServiceOffer No Equivalent No Equivalent

MCMProductAtomic Product
Semantically different, since MCM
uses the composite pattern and
TMF625 doesn¶t

MCMProductComposite

Product plus
ProductRe-lationship
plus unnamed
composition

Significant semantic differences,
since MCM uses the composite
pattern and TMF625 doesn¶t

MCMOrderedService No Equivalent No Equivalent
MCMInternalService No Equivalent No Equivalent
MCMServiceComponent No Equivalent No Equivalent
MCMServiceEndpoint No Equivalent No Equivalent
MCMServiceInterface No Equivalent No Equivalent
MCMMgmtDomain-Atomic No Equivalent No Equivalent
MCMMgmtDomain-
Composite No Equivalent No Equivalent

MCMOrderAtomic ProductOrder Semantically different, since MCM
is not restricted to ordering Products

MCMOrderItem OrderItem

Semantically different, since MCM
lacks many of the compositions that
are in TMF625 (but these have been
rejected in the latest MEF Ordering
model)

MCMMEFNetworkFunction No Equivalent No Equivalent
MCMMEFDescriptor No Equivalent No Equivalent
MCMVersion No Equivalent No Equivalent

Table 72. Brief Comparison of MCM and TMF625 Classes

	Bookmarks
	1 List of Contributing Members
	2 Abstract
	3 Terminology and Abbreviations
	4 Compliance Levels
	5 Numerical Prefix Conventions
	6 Introduction
	7 MEF Core Model (MCM)
	7.1 Overview of the MCM
	7.1.1 The Top Portion of the MCM
	7.1.2 MCMEntity Hierarchy
	7.1.3 MCMInformationResource Hierarchy
	7.1.4 Top Portion of the MCMMetaData Hierarchy
	7.1.5 MCM Compliance
	7.1.6 Alignment With Other SDOs
	7.1.7 Alignment with Existing MEF Work

	7.2 Overview of Changes
	7.3 MCMRootEntity Class Definition
	7.4 The MCMEntity Hierarchy
	7.5 MCMEntity Class Definition
	7.5.1 MCMEntityHasMCMMetaDataDetail Class Definition

	7.6 MCMUnManagedEntity Class Hierarchy
	7.6.1 MCMUnManagedEntity Class Definition
	7.6.2 MCMLocation Class Design
	7.6.2.1 Requirements
	7.6.2.2 Design

	7.6.3 MCMLocation Class Definition
	7.6.4 MCMLocationAtomic Class Definition
	7.6.5 MCMLocationComposite Class Definition
	7.6.6 MCMPhysicalEntity Class Definition
	7.6.7 MCMPhysicalEntityAtomic Class Definition
	7.6.8 MCMPhysicalEntityComposite Class Definition

	7.7 MCMDomain Class Hierarchy
	7.7.1 MCMDomain Class Definitiion
	7.7.2 MCMManagementDomain Class Definition
	7.7.3 MCMMgmtDomainAtomic Class Definition
	7.7.4 MCMMgmtDomainComposite Class Definition

	7.8 MCMBusinessObject Class Hierarchy
	7.8.1 MCMBusinessObject Class Definition
	7.8.2 MCMAggregatingBusinessObject Class Definition
	7.8.3 MCMSimpleBusinessObject Class Definition

	7.9 MCMManagedEntity Class Hierarchy
	7.9.1 MCMManagedEntity Class Definition
	7.9.2 MCMDefinition Class Hierarchy
	7.9.2.1 MCMDefinition Class Definition
	7.9.2.2 MCMDefinitionDecorator Class Definition
	7.9.2.3 MCMBusinessTerm Class Definition
	7.9.2.4 MCMFeature Class Description
	7.9.2.5 MCMProductFeature Class Definition
	7.9.2.6 MCMService Feature Class Definition
	7.9.2.7 MCMResourceFeature Class Definition
	7.9.2.8 MCMOffer Class Definition
	7.9.2.9 MCMProductOffer Class Definition
	7.9.2.10 MCMServiceOffer Class Definition
	7.9.2.11 MCMResourceOffer Class Definition

	7.9.3 MCMPolicyObject Class Definition
	7.9.4 MCMProduct Class Hierarchy
	7.9.4.1 MCMProduct Class Definition
	7.9.4.2 MCMProductAtomic Class Definition
	7.9.4.3 MCMProductComposite Class Definition

	7.9.5 MCMService Class Hierarchy
	7.9.5.1 MCMService Class Definition
	7.9.5.2 MCMServiceAtomic Class Definition
	7.9.5.3 MCMServiceComposite Class Definition
	7.9.5.4 MCMDeliveredService Class Definition
	7.9.5.5 MCMOrderedService Class Definition
	7.9.5.6 MCMInternalService Class Definition
	7.9.5.7 MCMServiceDecorator Class Definition
	7.9.5.8 MCMServiceComponent Class Definition

	7.9.6 MCMServiceEndpoint Class Definition
	7.9.7 MCMResource Class Hierarchy
	7.9.7.1 MCMResource Class Definition
	7.9.7.2 MCMVirtualResource Class Definition
	7.9.7.3 MCMVirtualResourceAtomic Class Definition
	7.9.7.4 MCMVirtualResourceComposite Class Definition
	7.9.7.5 MCMLogicalResource Class Definition
	7.9.7.6 MCMLogicalResourceAtomic Class Definition
	7.9.7.7 MCMLogicalResourceComposite Class Definition
	7.9.7.8 MCMCatalog Class Definition
	7.9.7.9 MCMCatalogItem Class Definition
	7.9.7.10 MCMServiceInterface Class Definition

	7.10 MCMParty Class Hierarchy
	7.10.1 MCMParty Class Definition
	7.10.2 MCMOrganization Class Definition
	7.10.3 MCMPerson Class Definition

	7.11 The InformationResource Class Hierarchy
	7.11.1 MCMInformationResource Class Definition
	7.11.2 MCMNetworkAddress Class Definition
	7.11.3 MCMContact Class Definition
	7.11.4 MCMGeocode Class Definition

	7.12 The MCMMetaData Class Hierarchy
	7.12.1 MCMMetaData Class Definition
	7.12.2 MCMRole Class Hierarchy
	7.12.2.1 MCMRole Class Definition
	7.12.2.2 MCMPartyRole Class Definition
	7.12.2.3 MCMCustomer Class Definition
	7.12.2.4 MCMServiceProvider Class Definition
	7.12.2.5 MCMAccessProvider Class Definition
	7.12.2.6 MCMPartner Class Definition

	7.12.3 MCMPolicyRole Class Definition
	7.12.4 MCMPolicyMetaData Class Definition
	7.12.5 MCMGeoSpatialMetaData Class Definition
	7.12.6 MCMMetaDataDecorator Class Definition
	7.12.6.1 MCMCapability Class Definition
	7.12.6.2 MCMNetworkFunction
	7.12.6.2.1 Background
	7.12.6.2.2 Rationale for Changing the Definition of a NetworkFunction
	7.12.6.2.3 MCMMEFNetworkFunction Class Definition

	7.12.6.3 MCMMEFDescriptor
	7.12.6.3.1 Background
	7.12.6.3.2 Rationale for Changing the Defintiion of a Descriptor
	7.12.6.3.3 MCMMEFDescriptor Class Definition

	7.12.6.4 MCMVersion Class Definition

	8 MEF Types
	8.1 Introduction
	8.2 MCMAdminState
	8.3 MCMCustomerStatus
	8.4 MCMEntityEnable
	8.5 MCMGeoMethod
	8.6 MCMGeoMethodAug
	8.7 MCMMetaDataEnableStatus
	8.8 MCMOperState
	8.9 MCMProductOrderType

	9 References
	Appendix A Basic Mapping between the MCM and TMF Models

