Introducing the Specifications of the Metro Ethernet Forum
<table>
<thead>
<tr>
<th>MEF 2</th>
<th>Requirements and Framework for Ethernet Service Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEF 3</td>
<td>Circuit Emulation Service Definitions, Framework and Requirements in Metro Ethernet Networks</td>
</tr>
<tr>
<td>MEF 6</td>
<td>Metro Ethernet Services Definitions Phase I</td>
</tr>
<tr>
<td>MEF 7</td>
<td>EMS-NMS Information Model</td>
</tr>
<tr>
<td>MEF 8</td>
<td>Implementation Agreement for the Emulation of PDH Circuits over Metro Ethernet Networks</td>
</tr>
<tr>
<td>MEF 9</td>
<td>Abstract Test Suite for Ethernet Services at the UNI</td>
</tr>
<tr>
<td>MEF 10</td>
<td>Ethernet Services Attributes Phase I</td>
</tr>
<tr>
<td>MEF 11</td>
<td>User Network Interface (UNI) Requirements and Framework</td>
</tr>
<tr>
<td>MEF 12</td>
<td>Metro Ethernet Network Architecture Framework Part 2: Ethernet Services Layer</td>
</tr>
<tr>
<td>MEF 13</td>
<td>User Network Interface (UNI) Type 1 Implementation Agreement</td>
</tr>
<tr>
<td>MEF 14</td>
<td>Abstract Test Suite for Ethernet Services at the UNI</td>
</tr>
<tr>
<td>MEF 15</td>
<td>Requirements for Management of Metro Ethernet Phase 1 Network Elements</td>
</tr>
<tr>
<td>MEF 16</td>
<td>Ethernet Local Management Interface</td>
</tr>
</tbody>
</table>

* MEF 10 * replaced MEF 1 and MEF 5
MEF 11
User Network Interface (UNI) Requirements and Framework

| Purpose | Defines a split demarcation function between the customer (Subscriber), and the Service Provider |
| Audience | Equipment Manufacturers building devices that will carry Carrier Ethernet Services. Useful for Service Providers architecting their systems. |

Ethernet Services “Eth” Layer

- **Service Provider 1**
 - Metro Ethernet Network
 - ETH UNI-N
 - E-NNI

- **Service Provider 2**
 - Metro Ethernet Network
 - ETH UNI-N
 - E-NNI

UNI: User Network Interface, **UNI-C:** UNI-customer side, **UNI-N** network side
NNI: Network to Network Interface, **E-NNI:** External NNI; **I-NNI** Internal NNI
MEF 11: UNI Specification

- **A Specification**
 - Defines a split demarcation function between the customer (Subscriber), and the service provider (Network)
 - Each maintains its own side independently of the other.

- **UNI Types**
 - Type 1: Manual configuration of the CE side only completely compatible with all existing Ethernet customer equipment
 - Type 2: Allows the UNI-N to provision, configure, and distribute EVC information and the associated service attributes to the CE
 - Type 3: Allows the CE to request, signal and negotiate EVCs and its associated Service Attributes to the UNI-N.
UNI - Network Location

- An access network may exist between the subscriber and the MEN
 - In that case the UNI is still co-located at the subscriber edge
 - UNI-C is always IEE802.3 PHY connected
- The reference point between the access network and the Provider Edge (PE) equipment is called Service Node Interface (SNI)
 - The SNI definition is not in the cope of MEF 11
 - UNI-N functional components which implement the Service Provider side of the UNI functions may be distributed over an access network
Scope of UNI Framework

UNI Reference model
- MEF 11 Defines the functions of each
- Defines the supporting requirements
Plane Functions & Requirements

- **Data Plane**
 - Requires and 802.3PHY, supports 802.1Q/p tagged frames
 - Allows VLAN ID and COS information to be sent from subscriber to the MEN

- **Control Plane**
 - Provides communication link between the subscriber and network side
 - Designed to Allow for Dynamic service contract set-up and negotiation as well as service provisioning

- **Management Plane**
 - Allows for Device Configuration, Service OAM, and Service load-balancing/restoration
 - Allows for greater degree of managed service offering by the carriers
 - Allows for greater customer insight into the service level being delivered by the MEN
Potential for more value added services

- Demonstrates the three UNI functions distributed on either side of the UNI
- Allows for transport multiplexing (TMF) of separate UNI-C ETH Access links on a single underlying transport (TRAN) terminated at a single UNI-N
MEF has defined various UNI functionality

• **Type 1**
 – Manual configuration of the CE side only- completely compatible with all existing Ethernet customer equipment

• **Type 2**
 – Allows the UNI-N to provision, configure, and distribute EVC information and the associated service attributes to the CE

• **Type 3**
 – Allows the CE to request, signal and negotiate EVCs and its associated Service Attributes to the UNI-N.
UNI Defined Service Attributes

- UNI Identifier,
- Physical Layer (speed, mode, and physical medium),
- MAC Layer,
- Service Multiplexing,
- UNI EVC ID,
- CE-VLAN ID/EVC Map,
- Maximum number of EVCs,
- Bundling,
- All to One Bundling,
- Bandwidth Profiles, and
- UNI Layer 2 Control Protocol Processing.
EVC Defined Service Attributes

- EVC Type (Point-to-Point or Multipoint-to-Multipoint),
- UNI List,
- Service Frame Delivery,
- CE-VLAN ID Preservation,
- CE-VLAN CoS Preservation
- Layer 2 Control Protocol Processing, and
- EVC related Performance
UNI General Requirements

- UNI Type 1 MUST allow UNI-C of Subscriber equipments to connect to a UNI-N of MEN using an IEEE 802.3 2002 conforming interface.

- UNI Type I MUST allow UNI-C of Subscriber equipments, conforming to IEEE 802.1Q [5] and IEEE 802.1D [6], to connect to a UNI-N of MEN.

- UNI Type I MUST allow UNI-C of Subscriber equipments, implementing IEEE 802.3 end stations e.g. routers, to connect to a UNI-N of MEN.

- UNI Type 1 UNI-Ns MUST support the full range of CE-VLAN IDs, in accordance with IEEE 802.1Q tag.
UNI Type 1 MUST support at least one of the following IEEE 802.3 Ethernet PHYs:

- 10BASE-T in Full-duplex mode
- 100BASE-T including 100BASE-TX and 100BASE-FX in Full-duplex mode
- 1000BASE-X including 1000BASE-SX, 1000BASE-LX, and 1000BASE-T in Full-duplex mode
- 10GBASE-SR, 10GBASE-LX4, 10GBASE-LR, 10GBASE-ER, 10GBASE-SW, 10GBASE-LW, and 10GBASE-EW in Full-duplex mode
UNI Type 1 Data Plane Requirements

- UNI Type 1 MUST allow sending Subscriber’s IEEE 802.3-2002 compliant service frames across the UNI.

- When multiple EVCs are supported by UNI-N, UNI Type 1 MUST allow mapping of Service Frames to corresponding EVCs.

- UNI Type 1 MUST allow the mapping of Service Frames to the following types of EVCs:
 - Point-to-Point EVC
 - Multipoint-to-Multipoint EVC

- UNI Type 1 MUST support an option for ingress bandwidth profile across the UNI.

- UNI Type 1 MUST be transparent to higher layer protocols.
UNI Type 1 Data Plane Requirements

- **UNI Type 1 MUST** allow manual configuration to set-up or tear-down EVCs across the UNI
- **UNI Type 1 MUST** allow manual configuration to modify the service attributes associated with the EVCs across the UNI
- **UNI Type 1 MUST** allow manual configuration to modify the ingress bandwidth profile across the UNI, where the modification may result in increment or decrement of bandwidth
- **If Bandwidth Profile Parameter CIR is supported, UNI Type 1 MUST** allow manual configuration to modify CIR in the following granularities:
 - 1Mbps steps up to 10Mbps
 - 5 Mbps steps beyond 10Mbps and up to 100Mbps
 - 50 Mbps steps beyond 100Mbps and up to 1Gbps
 - 500 Mbps steps beyond 1Gbps
UNI Type 1 Control Requirements

- **UNI Type 1 MUST** support manual configuration of following service parameters at UNI-C and UNI-N.
- **CE-VLAN ID/EVC Map** allowing mapping each Subscriber service frame into an EVC.
- Parameters of Ingress bandwidth profile per UNI
- Parameters of Ingress bandwidth profile per EVC
- Parameters of Ingress bandwidth profile per CoS
- **CoS Identifiers**
- **Handling of UNI Layer 2 control protocols**, where the handling may include:
 - Tunneled through EVC
 - Discarded, or
 - Processed
- **UNI Type 1 MUST** support failure detection based on failure detection mechanisms of IEEE 802.3ah.
UNI Type 2 Requirements

- **UNI Type 2 UNI-C and UNI-N MUST be backward compatible with UNI Type 1.**

- **UNI Type 2 UNI-C and UNI-N MUST support sending Ethernet OAM frames, as required by UNI Type 2 management plane, across the UNI.**

- **UNI Type 2 UNI-C and UNI-N MUST support the service parameters to be communicated from UNI-N to UNI-C**

- **UNI Type 2 UNI-C and UNI-N MUST support the following Ethernet OAM mechanisms between UNI-C and UNI-N such that UNI can be managed:**
 - Connectivity verification which helps in establishing connectivity status between UNI-C and UNI-N.
 - Communicate the EVC availability status to the UNI-C.
UNI Type 3 Requirements

• UNI Type 3 UNI-C and UNI-N MUST be backward compatible with UNI Type 2 and UNI Type 1.
Summary and Next Actions

• After reading this document you should now be familiar with
 – The main MEF architecture functional components for the Ethernet layer
 – Relationships between functional model components
 – Relationships between subscriber and provider function

• Next Actions
 – This introduction to the specification should be read along with the other related introductions and specifications and become familiar with the UNI/NNI elements
 – ITU-T recommendation G.8010 is also recommended reading for implementation of Carrier Ethernet Services over native Ethernet
 – For equipment manufacturers the next step is to read the specification and use the reference model as the basis for implementation.
 – The implementation of actual infrastructure within Access
For Full Details ...

... visit www.metroethernetforum.org to access the full specification.