

111

.....

Automation of LSO APIs Using Intent-Based Networking

Dr. John Strassner

CTO & VP Network Strategy Futurewei

Executive Summary

- MEF's IBN work has defined a novel definition of intent that
 - Uses natural language to express intent (initially over Allegro and Cantata)
 - Embraces *different expressions of intent* from different constituencies
 - Uses models and other MEF Assets to comprehend these different intents
 - Harmonizes these different intents and matches them to existing policies
 - Translates these intents to lower levels of abstractions
 - Produces lower level commands suitable for admins to implement business logic computations as well as data and commands over Legato, Presto, and Adagio
- Intent users can define intent-related performance and security objectives that *continue to be enforced until removed*
- Domain Specific Languages, implemented as Controlled (Natural) Languages, provide extensibility while simplifying APIs

Complexity

- Changing Technologies
- Changing Functionality
- Complex Business Rules
- Inability to scale
- Braintrust loss
- Different User Needs

Constituencies: The Policy Continuum

Definitions of Intent and AI/ML

- Intent
 - Enables **definition of business and technical abstractions** that invoke network services and manage their behavior
- What is Novel:
 Specified declaratively using a restricted form of a natural language.

 Translates what is required to how it is implemented, and then validates the

 implementation continuously
 - A
 - Machine-based intelligence in the service provider's systems that contextually self-learns and provides rapid decisions in the form of policies for deployment of virtualized resources and reprogramming of networks.
 - Machine Learning
 - Machines in service provider's systems that learn from acquired data on how to solve a problem more effectively so that AI can adapt policies accordingly.

LSO and APIs enable machine automation across networks & over technology domains.

Machine automation reference points for machine interfaces (APIs)

Evolution of How LSO Reference Points Will Be Used

Functional Overview

The Power of a Domain Specific Language (DSL)

- A DSL is a computer programming language that is specialized to serve the needs of a particular application domain
 - Uses concepts and terminology defined by that application domain for a given set of users
 - DSL examples: HTML, Verilog and VHDL, SQL, regular expression languages
 - A MEF DSL knows concepts applicable at a given IRP used by types of users
 - > A CANTATA DSL understands end-user properties of an SD-WAN application
 - > A LEGATO DSL understands detailed SD-WAN Service Attributes
 - > Makes it SIMPLE and EASY to use for MEF users to use and customize policies
- DSLs can be used to *specify* and/or *program* solutions
 - Specification through the use of its grammar
 - Programming by translation to a programming language

Example

- "Skype for Business Performance is Mission Critical"
 - Ambiguous!
 - Is this parsed as "Skype" "for Business Performance" "is Mission Critical"...or
 - "Skype for Business" "Performance is Mission Critical"
- Lexicon used to disambiguate the input
 - Recognizes "Skype for Business" is a type of application
 - Recognizes that "Mission Critical" is the highest level of Class of Service
- The point of Intent is to help the user!
 - User should not need to know exact language or technical terms
 - Most users have not programmed a network device!

Parsing Overview

- Recognize Named Entities
 - Text strings that belong to different classes of interest
 - Examples: People, Locations, Organizations, Products, Dates, Time
- Disambiguate Text
 - Fundamental for understanding what the user meant!
 - Foundation for Information Extraction* to better understand context
 - Enables additional facts to be inferred
 - Customer has an SLA which maps to a CoS for each App user can use...
 - Bank: financial institution vs aerial maneuver vs. part of water vs. support
- Use a combination of open source tools to build custom software that understands MEF context
- Named Entities mapped to Model classes, attributes, relationships

^{*} the automatic identification of selected types of entities, relations, or events in free text

Exemplary Parses Infer Proper Semantics

Example of Intent: SECaaS for SD-WAN

Applicable MEF Work

MEF Service Definitions for CE, IP, SD-WAN, SECaaS MEF Core Model, MEF Network Resource Model, MEF Network Resource Provisioning Model, MEF Common Services Model, MEF Common Resources Model

MEF Policy-Driven Orchestration, MEF Intent-Driven Orchestration MEF Processes, MEF LSO RA, MEF Sonata, MEF Legato, MEF Presto

Evolution of How LSO Reference Points Will Be Used

Intelligent LSO System

Intelligent Interfaces

Static APIs with MEFdefined service payloads

</>>

Natural Language Intent expressed using DSLs that serve different constituencies extensibly

101010

Self-learning LSO, enhanced using situational awareness realized through Albased cognition, to provide dynamically adaptable behavior

Model-Driven, Policy-based, Al-Assisted Orchestration

1. Outer Closed Control Loop for a Given Context and Long-Term Optimization

2. Inner Closed Control Loop Triggered by Context Change

