

MEF 124 © MEF Forum 2023. Any reproduction of this document, or any portion thereof, shall contain the
following statement: “Reproduced with permission of MEF Forum.” No user of this document is
authorized to modify any of the information contained herein.

MEF Standard
MEF 124

LSO Cantata and LSO Sonata Trouble Ticket and
Incident Management API - Developer Guide

February 2023

MEF 124 © MEF Forum 2023. Any reproduction of this document, or any portion thereof, shall contain the
following statement: “Reproduced with permission of MEF Forum.” No user of this document is
authorized to modify any of the information contained herein.

Disclaimer

© MEF Forum 2023. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any recipient
and is believed to be accurate as of its publication date. Such information is subject to change
without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume
responsibility to update or correct any information in this publication. No representation or
warranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or
applicability of any information contained herein and no liability of any kind shall be assumed by
MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the recipient or
user of this document. MEF is not responsible or liable for any modifications to this document
made by any other party.

The receipt or any use of this document or its contents does not in any way create, by implication
or otherwise:

a) any express or implied license or right to or under any patent, copyright, trademark or
trade secret rights held or claimed by any MEF member which are or may be associated
with the ideas, techniques, concepts or expressions contained herein; nor

b) any warranty or representation that any MEF members will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such
announced product(s) and/or service(s) embody any or all of the ideas, technologies, or
concepts contained herein; nor

c) any form of relationship between any MEF member and the recipient or user of this
document.

Implementation or use of specific MEF standards, specifications, or recommendations will be
voluntary, and no Member shall be obliged to implement them by virtue of participation in MEF
Forum. MEF is a non-profit international organization to enable the development and worldwide
adoption of agile, assured and orchestrated network services. MEF does not, expressly or
otherwise, endorse or promote any specific products or services.

3 / 87

Table of Contents

List of Contributing Members
1. Abstract
2. Terminology and Abbreviations
3. Compliance Levels
4. Introduction

4.1. Conventions in the Document
4.2. Relation to Other Documents
4.3. Approach
4.4. High-Level Flow

5. API Description
5.1. High-level use cases
5.2. API Endpoint and Operation Description

5.2.1. Seller side API Endpoints
5.2.2. Buyer side API Endpoints

5.3. Specifying the Buyer ID and the Seller ID
5.4. Model Structural Validation
5.5. Security Considerations

6. API Interactions and Flows
6.1. Use case 1: Create Ticket

6.1.1. Interaction flow
6.1.2. Create Trouble Ticket - Request
6.1.3. Create Trouble Ticket - Response
6.1.4. Trouble Ticket - Lifecycle

6.2. Use Case 2: Retrieve Ticket List
6.3. Use Case 3: Retrieve Ticket by Ticket Identifier
6.4. Use Case 4: Patch Ticket by Ticket Identifier
6.5. Use case 5: Cancel Ticket by Ticket Identifier
6.6 Use Case 6: Ticket Resolution Confirmation
6.7. Use Case 15: Retrieve Incident List
6.8. Use Case 16: Retrieve Incident by Incident Identifier
6.9. Use case 17: Register for Event Notifications
6.10. Use case 18: Send Event Notification

7. API Details
7.1. API patterns

7.1.1. Indicating errors
7.1.1.1. Type Error
7.1.1.2. Type Error400
7.1.1.3. enum Error400Code
7.1.1.4. Type Error401
7.1.1.5. enum Error401Code

4 / 87

7.1.1.6. Type Error403
7.1.1.7. enum Error403Code
7.1.1.8. Type Error404
7.1.1.9. Type Error409
7.1.1.10. Type Error422
7.1.1.11. enum Error422Code
7.1.1.12. Type Error500
7.1.1.13. Type Error501

7.1.2. Response pagination
7.2. Management API Data model

7.2.1. TroubleTicket
7.2.1.1. Type TroubleTicket_Common
7.2.1.2. Type TroubleTicket_Create
7.2.1.3. Type TroubleTicket
7.2.1.4. Type TroubleTicket_Find
7.2.1.5. Type TroubleTicket_Update
7.2.1.6. enum TroubleTicketPriorityType
7.2.1.7. Type IssueRelationship
7.2.1.8. enum TroubleTicketSeverityType
7.2.1.9. enum MEFObservedImpactType
7.2.1.10. Type TroubleTicketStatusChange
7.2.1.11. enum TroubleTicketStatusType
7.2.1.12. enum TroubleTicketType
7.2.1.13. Type Reason
7.2.1.14. Type WorkOrderRef

7.2.2. Incident
7.2.2.1. Type Incident
7.2.2.2. Type Incident_Find
7.2.2.3. enum IncidentType
7.2.2.4. enum IncidentStatusType
7.2.2.5. Type IncidentStatusChange

7.2.3. Common
7.2.3.1. Type AttachmentValue
7.2.3.2. enum DataSizeUnit
7.2.3.3. Type FieldedAddress
7.2.3.4. Type GeographicSubAddress
7.2.3.5. enum MEFBuyerSellerType
7.2.3.6. Type MEFByteSize
7.2.3.7. Type MEFGeographicPoint
7.2.3.8. Type MEFSubUnit
7.2.3.9. Type Note
7.2.3.10. Type RelatedContactInformation

5 / 87

7.2.3.11. Type RelatedEntity
7.2.4. Notification registration

7.2.4.1. Type EventSubscriptionInput
7.2.4.2. Type EventSubscription

7.3. Notification API Data model
7.3.1. Type Event
7.3.2. Type TroubleTicketEvent
7.3.3. enum TroubleTicketEventType
7.3.4. Type TroubleTicketEventPayload
7.3.5. Type IncidentEvent
7.3.6. Type IncidentEventPayload
7.3.7. enum IncidentEventType

8. References
Appendix A Acknowledgments

6 / 87

List of Contributing Members

The following members of the MEF participated in the development of this document and
have requested to be included in this list.

Member

Amartus

Lumen Technologies

NEC/Netcracker

Proximus

Spirent Communications

Table 1. Contributing Members

1. Abstract

This standard is intended to assist implementation of the Trouble Ticketing functionality
defined for the LSO Cantata and LSO Sonata Interface Reference Points (IRPs), for which
requirements and use cases are defined in MEF 113 Trouble Ticketing Requirements and
Use Cases [MEF113]. This standard consists of this document and complementary API
definitions for Trouble Ticket Management and Trouble Ticket Notification.

This standard normatively incorporates the following files by reference as if they were part
of this document, from the GitHub repository

https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK

commit id: 729804b9e383db93e6fca923106473f2828e244f

productApi/troubleTicket/troubleTicketManagement.api.yaml

productApi/troubleTicket/troubleTicketNotification.api.yaml

https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK

commit id: 5c9b397f9737a6d65931c6598bff1b58485e0a95

productApi/troubleTicket/troubleTicketManagement.api.yaml

productApi/troubleTicket/troubleTicketNotification.api.yaml

The Trouble Ticket API is defined using OpenAPI 3.0 [OAS-V3]

https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/tree/729804b9e383db93e6fca923106473f2828e244f
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/blob/729804b9e383db93e6fca923106473f2828e244f/productApi/troubleTicket/troubleTicketManagement.api.yaml
https://github.com/MEF-GIT/MEF-LSO-Sonata-SDK/blob/729804b9e383db93e6fca923106473f2828e244f/productApi/troubleTicket/troubleTicketNotification.api.yaml
https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK
https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK/tree/5c9b397f9737a6d65931c6598bff1b58485e0a95
https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK/blob/5c9b397f9737a6d65931c6598bff1b58485e0a95/productApi/troubleTicket/troubleTicketManagement.api.yaml
https://github.com/MEF-GIT/MEF-LSO-Cantata-SDK/blob/5c9b397f9737a6d65931c6598bff1b58485e0a95/productApi/troubleTicket/troubleTicketNotification.api.yaml

7 / 87

2. Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative
definitions of terms are found in other documents. In these cases, the third column is used to
provide the reference that is controlling, in other MEF or external documents.

In addition, terms defined in the standards referenced below are included in this document
by reference and are not repeated in the table below:

MEF 55.1
MEF 79
MEF 80
MEF 113

Term Description Reference

Application
Program
Interface

In the context of LSO, API describes one of the Management
Interface Reference Points based on the requirements specified
in an Interface Profile, along with a data model, the protocol
that defines operations on the data and the encoding format
used to encode data according to the data model. In this
document, API is used synonymously with REST API

[MEF55.1]

Buyer

In the context of this document, denotes the organization or
individual acting as the customer in a transaction over a
Cantata (Customer <-> Service Provider) or Sonata (Service
Provider <-> Partner) Interface

This
document;
adapted
from
[MEF80]

Incident

An entry within a Seller's tracking system created by the
context of this document, denotes a situation that is not part of
normal operationSeller, which contains information about a
Situation in the Seller's network that has a possible negative
impact on the operability of the network ona Product for one
or more Buyers

[MEF113]

Issue
In the context of this document, denotes a problem with a
Product as experienced by the Buyer that is not part of normal
operation.

[MEF113]

Notification
A message sent from the Seller to the Buyer to inform about
an event that has occurred in regard to a specific instance of a
Ticket or an Incident

[MEF113]

Requesting
Entity

The business organization that is acting on behalf of one or
more Buyers. In the most common case, the Requesting Entity

[MEF79]

8 / 87

represents only one Buyer and these terms are then
synonymous

Responding
Entity

The business organization that is acting on behalf of one or
more Sellers. In the most common case, the Responding Entity
represents only one Seller and these terms are then
synonymous

[MEF79]

REST API

Representational State Transfer. REST provides a set of
architectural constraints that, when applied as a whole,
emphasizes scalability of component interactions, generality of
interfaces, independent deployment of components, and
intermediary components to reduce interaction latency, enforce
security, and encapsulate legacy systems.

[REST]

Seller

In the context of this document, denotes the organization
acting as the supplier in a transaction over a Cantata
(Customer <-> Service Provider) or Sonata (Service Provider
<-> Partner) Interface

This
document;
adapted
from
[MEF80]

Situation
In the context of this document, denotes a problem that is not
part of normal operation in the Seller's network

[MEF113]

Ticket

An entry within a Seller's tracking system created by the
Buyer (or a third party on behalf of the Buyer), which contains
information about an Issue impacting normal operation of a
Product, along with support interventions made by technical
support staff, or third parties

[MEF113]

Trouble
Ticketing

In the context of this document, denotes the management of
both Tickets and Incidents

[MEF113]

Work Order
In the context of this document, denotes a set of tasks to be
scheduled and performed under the responsibility of a
Technician at a given location

[MEF113]

Table 2. Terminology

Term Description Reference

API Application Program Interface [MEF55.1]

REST API Representational State Transfer API [REST]

Table 3. Abbreviations

3. Compliance Levels

9 / 87

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14
(RFC 2119 [RFC2119], RFC 8174 [RFC8174]) when, and only when, they appear in all
capitals, as shown here. All key words must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx]
for required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD
NOT) are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words
MAY or OPTIONAL) are labeled as [Ox] for optional.

A paragraph preceded by [CRa]< specifies a conditional mandatory requirement that
MUST be followed if the condition(s) following the "<" have been met. For example, "
[CR1]<[D38]" indicates that Conditional Mandatory Requirement 1 must be followed if
Desirable Requirement 38 has been met. A paragraph preceded by [CDb]< specifies a
Conditional Desirable Requirement that SHOULD be followed if the condition(s) following
the "<" have been met. A paragraph preceded by **[COc]<**specifies a Conditional
Optional Requirement that MAY be followed if the condition(s) following the "<" have
been met.

10 / 87

4. Introduction

The Trouble Ticket API allows the Buyer to create, retrieve, and update Trouble Tickets as
well as receive notifications and Trouble Tickets' updates. This allows managing issues and
situations that are not part of normal operations of the Product provided by the Seller.

This standard specification document describes the Application Programming Interface
(API) for Trouble Ticketing functionality of the LSO Cantata Interface Reference Point
(IRP) and LSO Sonata IRP as defined in the MEF 55.1 Lifecycle Service Orchestration
(LSO): Reference Architecture and Framework [MEF55.1]. The LSO Reference
Architecture is shown in Figure 1 with both IRPs highlighted.

Figure 1. The LSO Reference Architecture

Cantata and Sonata IRPs define pre-ordering and ordering functionalities that allow an
automated exchange of information between business applications of the Buyer (Customer
or Service Provider) and Seller (Service Provider or Partner) Domains. Those are:

Product Catalog
Address Validation
Site Retrieval
Product Offering Qualification
Product Quote
Product Inventory
Product Ordering
Trouble Ticketing
Billing

The business requirements and use cases for Trouble Ticketing are defined in MEF W113
Trouble Ticketing Requirements and Use Cases [MEF113]. MEF W113 defines use cases

11 / 87

that cover Trouble Ticket, Incident, Appointment, and WorkOrder. The scope of this API
and Developer Guide covers the Trouble Ticket and Incident related use cases (based on the
[TMF621] Trouble Ticket API). The Appointment and Work order use cases are covered by
LSO Cantata and LSO Sonata Appointment API Developer Guide [MEF137].

This document is structured as follows:

Chapter 4 provides an introduction to Trouble Ticketing and its description in a broader
context of Cantata and Sonata and their corresponding SDKs.
Chapter 5 gives an overview of endpoints, resource model and design patterns.
Use cases and flows are presented in Chapter 6.
And finally, Chapter 7 complements previous sections with a detailed API description.

4.1. Conventions in the Document

Code samples are formatted using code blocks. When notation << some text >> is used in
the payload sample it indicates that a comment is provided instead of an example value
and it might not comply with the OpenAPI definition.
Model definitions are formatted as in-line code (e.g. TroubleTicket).
In UML diagrams the default cardinality of associations is 0..1. Other cardinality
markers are compliant with the UML standard.
In the API details tables and UML diagrams required attributes are marked with a * next
to their names.
In UML sequence diagrams {{variable}} notation is used to indicate a variable to be
substituted with a correct value.

4.2. Relation to Other Documents

This API implements the Trouble Ticket related requirements and use cases that are defined
in MEF 113 [MEF113]. The API definition builds on TMF621 Trouble Ticket API REST
Specification R19.0.1 [TMF621].

4.3. Approach

As presented in Figure 2. both Cantata and Sonata API frameworks consist of three
structural components:

Generic API framework
Product-independent information (Function-specific information and Function-specific
operations)
Product-specific information (MEF product specification data model)

12 / 87

Figure 2. Cantata and Sonata API framework

The essential concept behind the framework is to decouple the common structure,
information and operations from the specific product information content.
Firstly, the Generic API Framework defines a set of design rules and patterns that are
applied across all Cantata or Sonata APIs.
Secondly, the product-independent information of the framework focuses on a model of a
particular Cantata or Sonata functionality and is agnostic to any of the product
specifications.
Finally, the product-specific information part of the framework focuses on MEF product
specifications that define business-relevant attributes and requirements for trading MEF
subscriber and MEF operator services.

The Trouble Ticket is product-agnostic in its nature and is not intended to carry any product-
specific payloads. It only references products from the inventory by id. It operates using the
Generic API Framework and the Function-specific Information and Operations.

4.4. High-Level Flow

Trouble Ticket is part of a broader Cantata and Sonata End-to-End flow. Figure 3. below
shows a high-level diagram to get a good understanding of the whole process and Trouble
Ticket's position within it.

13 / 87

Figure 3. Cantata and Sonata End-to-End Function Flow

Address Validation:
Allows the Buyer to retrieve address information from the Seller, including exact
formats, for addresses known to the Seller.

Site Retrieval:
Allows the Buyer to retrieve Geographic Site information including exact formats
for Geographic Sites known to the Seller.

Product Offering Qualification (POQ):
Allows the Buyer to check whether the Seller can deliver a product or set of
products from among their product offerings at the geographic address or a
Geographic Site specified by the Buyer; or modify a previously purchased product.

Quote:
Allows the Buyer to submit a request to find out how much the installation of an
instance of a Product Offering, an update to an existing Product, or a disconnect of
an existing Product will cost.

Product Order:
Allows the Buyer to request the Seller to initiate and complete the fulfillment
process of an installation of a Product Offering, an update to an existing Product, or
a disconnect of an existing Product at the address defined by the Buyer.

Product Inventory:
Allows the Buyer to retrieve the information about the existing Product instances
from Seller's Product Inventory.

Trouble Ticketing:
Allows the Buyer to create, retrieve, and update Trouble Tickets as well as receive
notifications about Incidents' and Trouble Tickets' updates. This allows managing
issues and situations for a Product provided by the Seller.

14 / 87

5. API Description

This section presents the API structure and design patterns. It starts with the high-level use
cases diagram. Then it describes the REST endpoints with use case mapping. Next, it gives
an overview of the API resource model.

5.1. High-level use cases

Figure 4 presents a high-level use case diagram as specified in MEF 113 [MEF113] in
section 7. This picture aims to help understand the endpoint mapping. Use cases are
described extensively in chapter 6.

Note: As stated earlier, the scope of this API does not cover the Appointment and
WorkOrder related use cases. The diagram below lists all use cases defined in MEF 113 to
highlight which of them are covered. For easier requirements matching this document keeps
the original MEF 113 numbering. The remaining use cases are covered by LSO Cantata and
LSO Sonata Appointment API Developer Guide [MEF137].

15 / 87

16 / 87

Figure 4: Use cases

5.2. API Endpoint and Operation Description

5.2.1. Seller side API Endpoints

Base URL for Cantata: https://{{serverBase}}:{{port}}{{?/seller_prefix}}/mefApi/cantata/troubleTicket/v4/

Base URL for Sonata: https://{{serverBase}}:{{port}}{{?/seller_prefix}}}/mefApi/sonata/troubleTicket/v4/

The following API endpoints are implemented by the Seller and allow the Buyer to create,
retrieve, modify Trouble Tickets and register for Notifications. The endpoints and
corresponding data model are defined in

productApi/troubleTicket/troubleTicketManagement.api.yaml.

API endpoint Description
MEF 113
Use Case
mapping

POST /troubleTicket

A request initiated by the Buyer to create a Ticket
in the Seller's system to report an Issue
experienced by the Buyer or their end user.

UC 1: Create
Ticket

GET /troubleTicket

The Buyer requests a list of Tickets from the
Seller based on a set of specified filter criteria.
The Seller returns a summarized list of Tickets.

UC 2:
Retrieve
Ticket List

17 / 87

API endpoint Description
MEF 113
Use Case
mapping

GET /troubleTicket/{{id}}
The Buyer requests detailed information about a
single Ticket based on a Ticket Identifier.

UC 3:
Retrieve
Ticket by
Ticket
Identifier

PATCH /troubleTicket/{{id}}
A request by the Buyer to patch/partial up-date a
Ticket created by the Buyer in the Seller's system.

UC 4: Patch
Ticket by
Ticket
Identifier

POST

/troubleTicket/{{id}}/cancel

A request by the Buyer to cancel a Ticket created
by the Buyer in the Seller's system.

UC 5:
Cancel
Ticket by
Ticket
Identifier

POST

/troubleTicket/{{id}}/close

A request from the Buyer confirming whether
they agree that a Ticket created by the Buyer in
the Seller's system can be closed, since the
reported Issue is no longer observed. This request
is the action taken by a Buyer after receiving an
Event Notification from the Seller with
Notification Event Type TroubleTicketResolvedEvent.

UC 6: Ticket
Resolution
Confirmation

POST

/troubleTicket/{{id}}/reopen

A request from the Buyer rejecting that a Ticket
created by the Buyer in the Seller's system can be
closed, because the reported Issue is still
observed. This request is the action taken by a
Buyer after receiving a Event Notification from
the Seller with Notification Event Type
TroubleTicketResolvedEvent.

UC 6: Ticket
Resolution
Confirmation

POST /hub The Buyer requests to subscribe to notifications.

UC 17:
Register for
Event
Notifications

GET /hub/{{id}}
A request initiated by the Buyer to retrieve the
details of the notification subscription.

UC 17:
Register for
Event
Notifications

18 / 87

API endpoint Description
MEF 113
Use Case
mapping

DELETE /hub/{{id}}
A request initiated by the Buyer to instruct the
Seller to stop sending notifications.

UC 17:
Register for
Event
Notifications

Table 4. Seller side mandatory API endpoints

[R1] The implementation MUST support API endpoints listed in Table 4. [MEF113 R1],
[MEF113 R2]

API
endpoint

Description
MEF 113 Use
Case mapping

GET /incident

The Buyer requests a list of Incidents from the Seller
based on a set of specified filter criteria. The Seller
returns a summarized list of Incidents.

UC 15. Retrieve
Incident List

GET

/incident/{{id}}

The Buyer requests detailed information about a single
Incident based on an Incident Identifier.

UC 16. Retrieve
Incident by
Incident
Identifier

Table 5. Seller side optional API endpoints

[O1] The implementation MAY support API endpoints listed in Table 5. [MEF113 O1]

[CR1]<([O1]) If any of endpoints listed in Table 5 is supported, then all endpoints listed in
Table 5 MUST be supported. [MEF113 [CR1]<[O1]]

5.2.2. Buyer side API Endpoints

Base URL for Cantata: https://{{serverBase}}:{{port}}
{{?/buyer_prefix}}/mefApi/cantata/troubleTicketNotification/v4/

Base URL for Sonata: https://{{serverBase}}:{{port}}
{{?/buyer_prefix}}/mefApi/sonata/troubleTicketNotification/v4/

The following API Endpoints are used by the Seller to post notifications to registered
listeners. The endpoints and corresponding data model are defined in

productApi/troubleTicket/troubleTicketNotification.api.yaml

19 / 87

API Endpoint Description
MEF 113
Use Case
Mapping

API Endpoint Description
MEF 113
Use Case
Mapping

POST

/listener/troubleTicketAttributeValueChangeEvent

A request initiated by the Seller to
notify the Buyer on TroubleTicket
attribute value change.

UC 18:
Send Event
Notification

POST /listener/troubleTicketStatusChangeEvent

A request initiated by the Seller to
notify the Buyer on
TroubleTicket.status change.

UC 18:
Send Event
Notification

POST /listener/troubleTicketResolvedEvent

A request initiated by the Seller to
notify the Buyer on TroubleTicket
reaching the resolved status.

UC 18:
Send Event
Notification

POST

/listener/troubleTicketInformationRequiredEvent

A request initiated by the Seller to
notify the Buyer that and additional
information is required for further
Ticket processing

UC 18:
Send Event
Notification

Table 6. Buyer side mandatory API endpoints

[R2] The implementation MUST support API endpoints listed in Table 6. [MEF113 R2]

API Endpoint Description
MEF 113
Use Case
Mapping

POST /listener/incidentCreateEvent
A request initiated by the Seller to
notify the Buyer on Incident creation

UC 18: Send
Event
Notification

POST

/listener/incidentAttributeValueChangeEvent

A request initiated by the Seller to
notify the Buyer on Incident attribute
value change.

UC 18: Send
Event
Notification

POST /listener/incidentStatusChangeEvent

A request initiated by the Seller to
notify the Buyer on Incident.status
change.

UC 18: Send
Event
Notification

Table 7. Buyer side optional API endpoints

[O2] The implementation MAY support API endpoints listed in Table 7. [MEF113 O2]

[CR2]<([O1]]) If any of endpoints listed in Table 5 is supported, then the Seller MUST
support all endpoints listed in Table 7. [MEF113 [CR2]<[O2]]

20 / 87

5.3. Specifying the Buyer ID and the Seller ID

A business entity willing to represent multiple Buyers or multiple Sellers must follow
requirements of MEF 79 [MEF79] chapter 8.8, which states:

For requests of all types, there is a business entity that is initiating an Operation
(called a Requesting Entity) and a business entity that is responding to this request
(called the Responding Entity). In the simplest case, the Requesting Entity is the
Buyer and the Responding Entity is the Seller. However, in some cases, the
Requesting Entity may represent more than one Buyer and similarly, the Responding
Entity may represent more than one Seller.

While it is outside the scope of this specification, it is assumed that the Requesting
Entity and the Responding Entity are aware of each other and can authenticate
requests initiated by the other party. It is further assumed that both the Buying Entity
and the Requesting Entity know:

a) the list of Buyers the Requesting Entity represents when interacting with this
Responding Entity; and
b) the list of Sellers that this Responding Entity represents to this Requesting Entity.

In the API the buyerId and sellerId are represented as query parameters in each operation
defined in troubleTicketManagement.api.yaml and as attributes of events as described in
troubleTicketNotification.api.yaml.

[R3] If the Requesting Entity has the authority to represent more than one Buyer the request
MUST include buyerId query parameter that identifies the Buyer being represented [MEF79
R80]

[R4] If the Requesting Entity represents precisely one Buyer with the Responding Entity,
the request MUST NOT specify the buyerId [MEF79 R81]

[R5] If the Responding Entity represents more than one Seller to this Buyer the request
MUST include sellerId query parameter that identifies the Seller with whom this request is
associated [MEF79 R82]

[R6] If the Responding Entity represents precisely one Seller to this Buyer, the request
MUST NOT specify the sellerId [MEF79 R83]

[R7] If buyerId or sellerId attributes were specified in the request same attributes MUST be
used in the notification payload.

5.4. Model Structural Validation

21 / 87

The structure of the HTTP payloads exchanged via Trouble Ticket API endpoints is defined
using OpenAPI version 3.0.

[R8] Implementations MUST use payloads that conform to these definitions.

5.5. Security Considerations

There must be an authentication mechanism whereby a Seller can be assured who a Buyer is
and vice-versa. There must also be authorization mechanisms in place to control what a
particular Buyer or Seller is allowed to do and what information may be obtained. However,
the definition of the exact security mechanism and configuration is outside the scope of this
document. It is specified by a separate MEF Project (MEF 128 [MEF128]).

22 / 87

6. API Interactions and Flows

This section provides a detailed insight into the API functionality, use cases, and flows. It
starts with Table 8 presenting a list and short description of all business use cases then
presents the variants of end-to-end interaction flows, and in the following subchapters
describes the API usage flow and examples for each of the use cases.

Table 8. lists the use cases supported by Trouble Ticket API (use case numbers as in MEF
113 for mapping):

Use
Case
#

Use Case
Name

Use Case Description

1 Create Ticket
A request initiated by the Buyer to create a Ticket in the Seller's
system to report an Issue experienced by the Buyer or their end-
user.

2
Retrieve
Ticket List

The Buyer requests a list of Tickets from the Seller based on a
set of specified filter criteria. The Seller returns a summarized
list of Tickets.

3

Retrieve
Ticket by
Ticket
Identifier

The Buyer requests detailed information about a single Ticket
based on a Ticket Identifier.

4
Patch Ticket
by Ticket
Identifier

A request by the Buyer to patch/partial update a Ticket based on
a Ticket Identifier.

5

Cancel
Ticket by
Ticket
Identifier

A request by the Buyer to cancel a Ticket based on a Ticket
Identifier.

6
Ticket
Resolution
Confirmation

A reply from the Buyer confirming whether they agree that a
Ticket can be closed, since the reported Issue is no longer
observed. This reply is the action taken by a Buyer after
receiving an Event Notification from the Seller with Event
Notification Type TICKET_RESOLVED.

15
Retrieve
Incident List

The Buyer requests a list of Incidents from the Seller based on a
set of specified filter criteria. The Seller returns a summarized
list of Incidents.

23 / 87

Use
Case
#

Use Case
Name

Use Case Description

16

Retrieve
Incident by
Incident
Identifier

The Buyer requests detailed information about a single Incident
based on an Incident Identifier.

17
Register for
Event
Notifications

The Buyer requests to subscribe to Ticket and Incident
Notifications.

18
Send Event
Notification

Send Event Notification The Seller sends a notification regarding
a Ticket or Incident to the Buyer

Table 8. Use cases description

MEF 113 defines use cases related to three domains:

Trouble Ticket
WorkOrder
Appointment

Figure 5 presents an example of an end-to-end flow that shows dependencies between all
the domains:

24 / 87

Figure 5. End-to-End API flow with Workorder and Appointment

(1) The Buyer experiences the issue in the network and creates the Trouble Ticket.
(2) The Seller creates the Trouble Ticket and sets the status: acknowledged.
The Seller decides that a WorkOrder with Appointment is needed to resolve the issue.
The Seller creates a Workorder in state open (4) and sends a workOrderCreateEvent (3).
(7-8) The Buyer requests detailed information about the WorkOrder.
(9) The Buyer proposes time slots for scheduling an Appointment, if the WorkOrder
requires the Appointment (the parameter set to appointmentRequired=true)
(10) The Seller responds with the list of available time slots.
(11) The Buyer schedules an Appointment with agreed time slot.
(12) The Buyer sets the Appointment status to confirmed.
(14-15) Appointment creation causes the WorkOrder state change to planned
(17-18) WorkOrder state change to planned causes the Trouble Ticket status change back
to in_progress.

25 / 87

The detailed business requirements of each of the use cases are described in sections 7 and 8
of MEF 113 [MEF113].

6.1. Use case 1: Create Ticket

This is the initial step for Trouble Ticket processing.

6.1.1. Interaction flow

The flow of this use case is very simple and is described in Figure 6.

Figure 6: Use Case 1 - Trouble Ticket create request flow

The Buyer experiences an Issue with a Product (Identified by Product.id) and may decide to
check if there is any Incident related to the affected Product. If yes, the Buyer may decide to
link it with the new Ticket. The Buyer sends a request with a TroubleTicket_Create type in the
body. The Seller performs request validation, assigns an id, and returns TroubleTicket type in
the response body, with a status set to acknowledged. From this point, the Trouble Ticket is ready
for further processing. The Buyer must track the progress of the process by subscribing for
notifications (see chapter 6.9). The flow example with the use of Notifications is presented
in Figure 7

26 / 87

Figure 7: Trouble Ticket progress tracking - Notifications

Note: The context of notifications is not a part of the considered use case itself. It is
presented to show the big picture of end-to-end flow. This applies also to all further use case
flow diagrams with notifications.

6.1.2. Create Trouble Ticket - Request

Figure 8 presents the data model of the Trouble Ticket. The model of the request message
(TroubleTicket_Create) is a subset of the TroubleTicket model and contains only attributes that can
(or must) be set by the Buyer. The Seller then enriches the entity in the response with
additional information. For visibility of these shared attributes, the TroubleTicket_Common has been
introduced. Though, it is not to be used directly in the payload.

The full list of attributes is available in Section 7 and in the API specification which is an
integral part of this standard.

27 / 87

Figure 8: Create Trouble Ticket Model

The snippet below presents an example of the Create Trouble Ticket Request:

TroubleTicket Create

{
 "description": "Connection is lost",
 "externalId": "BuyerTicket-123",
 "issueStartDate": "2021-06-02T14:21:11.090Z",
 "priority": "critical",
 "severity": "extensive",
 "ticketType": "failure",
 "attachment": [
 {
 "attachmentId": "att-001",
 "author": "John Example",
 "creationDate": "2021-06-02T14:21:11.090Z",
 "description": "Print screen from the assurance system",
 "mimeType": "image/jpeg",
 "name": "Alarm",
 "url": "https://example.com/documents/00000000-0000-1111-2222-000000001111",
 "size": {
 "amount": 5.3,
 "units": "MBYTES"
 },
 "source": "buyer"
 }
],
 "note": [
 {
 "id": "note-1",
 "author": "John Example",
 "date": "2021-06-02T14:25:11.090Z",
 "source": "buyer",
 "text": "Couldn't reach the support on phone."
 }
],
 "relatedEntity": [<<A relation to a Product that this Ticket refers to>>
 {
 "id": "01494079-6c79-4a25-83f7-48284196d44d",
 "role": "Issue Source",
 "@referredType": "Product"
 }
],
 "relatedContactInformation": [
 {
 "emailAddress": "john.example@example.com",

28 / 87

 "name": "John Example",
 "number": "+12-345-678-90",
 "organization": "Buyer Example Co.",
 "role": "reporterContact"
 }
]
}

[R9] The Buyer's Create request MUST include the following attributes: [MEF113 R31]

description

observedImpact

priority

relatedContactInformation item with a role set to reporterContact
relatedEntity - (pointer to related Product instance)
severity

ticketType

Note: During the onboarding the Seller may require to provide an additional contact role.

Note: It is up to the Seller's discretion on how to react in case the Buyer provides a contact
role that is not listed by this standard or agreed upon during the onboarding. Preferably the
Seller should return an error with a message stating which roles are accepted. It may also be
ignored

Note: The relatedEntity attribute is used to provide the related product id. It is done by setting
the additional @referredType to Product. This follows the TMF pattern which enables compliance
and allows referring also other potential types in MEF (e.g. Service). In this version, the only
type that is mentioned in the implemented requirements document is the Product and to ease
the request RelatedEntity.@ReferredType and the relatedEntityType in the filter criteria has a default
value: Product.

[R10] If the attachment is provided, either the attachment.url or (attachment.content and
attachment.mimeType) MUST be specified. [MEF113 R18], [MEF113 R19]

6.1.3. Create Trouble Ticket - Response

The Seller responds with a TroubleTicket type, which adds some attributes to the
TroubleTicket_Create that was used in the Buyer's request.

Note: The term "Seller Response Code" used in the Business Requirements maps to HTTP
response code, where 2xx indicates Success and 4xx or 5xx indicate Failure.

The following snippet presents the Seller's response. It has the same structure as in the
retrieve by identifier operation.

{
 "id": "00000000-4444-5555-6666-000000000987",
 "href": "{{baseUrl}}/troubleTicket/00000000-4444-5555-6666-000000000987",

29 / 87

 "creationDate": "2021-06-02T20:56:08.559Z",
 "expectedResolutionDate": "2021-06-03T20:56:08.559Z",
 "lastUpdate": "2021-06-02T20:56:08.559Z",
 "sellerPriority": "critical",
 "sellerSeverity": "extensive",
 "status": "acknowledged",
 "description": "Connection is lost", << as provided by the Buyer >>
 "externalId": "BuyerTicket-123", << as provided by the Buyer >>
 "issueStartDate": "2021-06-02T14:21:11.090Z", << as provided by the Buyer >>
 "priority": "critical", << as provided by the Buyer >>
 "severity": "extensive", << as provided by the Buyer >>
 "ticketType": "failure", << as provided by the Buyer >>
 "attachment": [
 { << as provided by the Buyer >>
 "attachmentId": "att-001",
 "author": "John Example",
 "creationDate": "2021-06-02T14:21:11.090Z",
 "description": "Print screen from the assurance system",
 "mimeType": "image/jpeg",
 "name": "Alarm",
 "url": "https://example.com/documents/00000000-0000-1111-2222-000000001111",
 "size": {
 "amount": 5.3,
 "units": "MBYTES"
 },
 "source": "buyer"
 }
],
 "note": [
 {<< as provided by the Buyer >>
 "id": "note-1",
 "author": "John Example",
 "date": "2021-06-02T14:25:11.090Z",
 "source": "buyer",
 "text": "Couldn't reach the support on phone."
 }
],
 "relatedEntity": [
 {<< as provided by the Buyer >>
 "id": "01494079-6c79-4a25-83f7-48284196d44d",
 "role": "Issue Source",
 "@referredType": "Product"
 }
],
 "relatedContactInformation": [
 {<< as provided by the Buyer >>
 "emailAddress": "john.example@example.com",
 "name": "John Example",
 "number": "+12-345-678-90",
 "organization": "Buyer Example Co.",
 "role": "reporterContact"
 },
 {<< a new item appended by the Seller >>
 "emailAddress": "Seller.TicketContact@example.com",
 "name": "Seller Ticket Contact",
 "number": "+98-765-432-10",
 "organization": "Seller Example Co.",
 "role": "sellerTicketContact"
 }
],
 "relatedIssue": [
 {
 "@referredType": "TroubleTicket",
 "id": "00000000-1234-4321-1111-00000000888",
 "creationDate": "2021-06-02T20:56:08.559Z",
 "description": "The issue is caused by.",
 "relationshipType": "caused by",
 "source": "seller"
 }
],
 "statusChange": [
 {
 "changeDate": "2021-06-02T20:56:08.560Z",
 "status": "acknowledged"
 }
]
}

30 / 87

The response to the create request does not contain all possible attributes, for example, the
resolutionDate is valid only in the future lifecycle of the Trouble Ticket.

[R11] The Seller's response MUST include all and unchanged attributes' values as provided
in the request. [MEF113 R33]

These attributes are indicated above with an appropriate comment: << as provided by the Buyer >>.

[R12] The Seller MUST specify the following attributes in a response: [MEF113 R35]

creationDate

id

relatedContactInformation - item with a role set to sellerTicketContact
sellerSeverity

sellerPriority

status

[R13] The status of the Ticket in the Seller's response MUST be acknowledged. [MEF113 R34]

6.1.4. Trouble Ticket - Lifecycle

Figure 9 presents the Trouble Ticket state machine:

Figure 9: Trouble Ticket State Machine

After receiving the request, the Seller performs a validation of the message. If any problem
is found an Error response is provided. If the validation passes a response is provided with
TroubleTicket in acknowledged status. Then the Seller starts working on resolving the issue and

31 / 87

moves the Trouble Ticket to inProgress state. From there, additional information might be
required to proceed and the Trouble Ticket moves to pending until one is provided. The
Trouble Ticket is set as resolved when the Seller claims the issue is fixed. From there the
Buyer can either reopen or close the Ticket (use cases described in following sections). The
Buyer may also request for a Trouble Ticket to be cancelled, while in acknowledged, pending, or
inProgress state.

Table 9 presents the mapping between the API status names (aligned with TMF) and the
MEF 113 naming, together with statuses' description.

status MEF 113 name Description

acknowledged ACKNOWLEDGED

A request to create a Ticket was
received and accepted by the Seller.
The Ticket create request has been
validated and a Ticket has been
created by the Seller and allocated
a unique id.

inProgress IN_PROGRESS
The Ticket is in the process of
being handled and investigated for
resolution by the Seller.

resolved RESOLVED

The Buyer's Issue described in the
Ticket was resolved by the Seller.
The Seller assumes that normal
operation is re-established for the
Buyer's product and i snow waiting
for the Buyer to confirm that the
Issue they reported is no longer
observed.

closed CLOSED

The Buyer has confirmed that the
Issue they reported is no longer
observed, or the pre-defined time
frame (agreed upon between Buyer
and Seller) for confirming that the
Issue has been resolved has passed
without a response by the Buyer.
This is a terminal state.

32 / 87

status MEF 113 name Description

reopened REOPENED

The Buyer has verified that the
Issue described in the Ticket is still
observed and has not been resolved
satisfactorily. The Buyer rejects the
Seller's request to close the Ticket.
The Ticket has been reopened and
is waiting for further actions from
the Seller.

pending PENDING

The Seller is waiting on the Buyer
to provide additional information
for the Ticket, or the Buyer to
schedule an Appointment for the
WorkOrder (linked to the Ticket) in
order to continue processing the
Ticket. This may result in the clock
being stopped for the service level
agreement until the Buyer has
responded to the request.

assessingCancellation ASSESSING_CANCELLATION

A request has been made by the
Buyer to cancel the Ticket and is
being assessed by the Seller to
determine whether to just close the
Ticket, or continue to resolve the
Issue to prevent similar Create
Ticket requests from other Buyers.
If the Seller chooses to resolve the
Issue, the Seller might create an
Incident or an internal Ticket for
the Issue, but that is outside the
scope of this document. After the
Seller has completed the
assessment, the Seller updates the
Ticket State to cancelled.

cancelled CANCELLED

The Ticket has been successfully
cancelled by the Buy-er. The Buyer
will receive no further Event
Notifications for the Ticket. This is
a terminal state.

Table 9: Trouble Ticket statuses

33 / 87

[R14] The Seller MUST support all Trouble Ticket statuses and their associated transitions
as described in Figure 9 and Table 9. [MEF113 R155]

[R15] If the Trouble Ticket was in pending status and an Appointment is created and the
related WorkOrder moves to planned state, the Seller MUST update the Trouble Ticket status
to inProgress. [MEF113 R91]

[R16] The Buyer MUST set the respective source=buyer attribute when adding any item to one
of the following list: note, attachment, or relatedIssue. [MEF113 R8], [MEF113 R14], [MEF113
R23]

[R17] The Buyer MUST NOT set the respective source=seller attribute when adding any item
to one of the following list: note, attachment, or relatedIssue. [MEF113 R9], [MEF113 R15],
[MEF113 R24]

[R18] The Seller MUST set the source=seller when adding any item to one of the following
list: note, attachment, or relatedIssue. [MEF113 R6], [MEF113 R12], [MEF113 R21]

[R19] The Seller MUST NOT set the source=buyer when adding any item to one of the
following list: note, attachment, or relatedIssue. [MEF113 R7], [MEF113 R13], [MEF113 R22]

[R20] Any item in a note or attachment list MUST NOT be modified or deleted once added.
[MEF113 R10], [MEF113 R16], [MEF113 R52], [MEF113 R56]

[O3] The Seller MAY append an item to note, attachment, or relatedIssue if required. [MEF113!
O8], [MEF113! O9], [MEF113! O11]

[O4] The Seller MAY add, modify, or delete an item in relatedContactInformation with
role=sellerTechnicalContact if the Ticket State is in acknowledged, inProgress, reopened, pending or
assessingCancellation. [MEF113 O10]

[O5] The Seller MAY add or modify an item in workOrder list. [MEF113 O11]

[R21] The Seller MUST NOT modify or delete any items provided by the Buyer in
following lists: relatedContactInformation, note, attachment, relatedEntity, or relatedIssue. [MEF113 R7],
[MEF113 R37].

[R22] The Seller MUST add a note when any of the following Trouble Ticket attributes are
updated: [MEF113 R36]

expectedResolutionDate

relatedIssue

6.2. Use Case 2: Retrieve Ticket List

34 / 87

[O6] The Buyer MAY retrieve a list of Trouble Tickets by using a GET /troubleTicket operation
with desired filtering criteria. The attributes that are available to be used are: [MEF113 O12]

externalId

priority

sellerPriority

severity

sellerSeverity

ticketType

status

observedImpact

relatedEntityId

relatedEntityType

creationDate.gt

creationDate.lt

expectedResolutionDate.gt

expectedResolutionDate.lt

resolutionDate.gt

resolutionDate.lt

The Buyer may also ask for pagination with the use of the offset and limit parameters. The
filtering and pagination attributes must be specified in URI query format RFC3986. Section
7.1.2. provides details about the implementation of pagination mechanism.

https://serverRoot/mefApi/sonata/troubleTicket/v2/troubleTicket?
status=inProgress&priority=critical&limit=10&offset=0

The example above shows a Buyer's request to get all Trouble Tickets that are in the
inProgress status and with critical priority. Additionally, the Buyer asks only for a first (offset=0)
pack of 10 results (limit=10) to be returned. The correct response (HTTP code 200) in the
response body contains a list of TroubleTicket_Find objects matching the criteria. To get more
details (e.g. the item level information), the Buyer has to query a specific TroubleTicket by id.

[R23] The Seller MUST put the following attributes (if set) into the TroubleTicket_Find object in
the response: [MEF113 R39]:

id

externalId

relatedEntity

observedImpact

priority

sellerPriority

severity

sellerSeverity

35 / 87

ticketType

status

creationDate

expectedResolutionDate

resolutionDate

[R24] In case no items matching the criteria are found, the Seller MUST return a valid
response with an empty list.

Figure 10: Use Case 2: Retrieve Ticket List - Model

6.3. Use Case 3: Retrieve Ticket by Ticket Identifier

The Buyer can get detailed information about the Trouble Ticket from the Seller by using a
GET /troubleTicket/{{id}} operation.

[R25] In case id does not allow to find a TroubleTicket instance in Seller's system, an error
response Error404 MUST be returned. [MEF113 R42]

[R26] The Seller MUST put the following attributes into the TroubleTicket object in the
response: [MEF113 R44]

id

relatedEntity

description

observedImpact

priority

sellerPriority

severity

sellerSeverity

36 / 87

ticketType

status

creationDate

relatedContactInformation

[R27] The Seller MUST provide all remaining optional attributes if they were previously
set by the Buyer or the Seller. [MEF113 R45]

[R28] The Seller's response to a Retrieve Ticket by Ticket Identifier request MUST include
the resolutionDate and a note added by the Seller describing how the Ticket was resolved if the
status is closed or resolved. [MEF113 R46]

6.4. Use Case 4: Patch Ticket by Ticket Identifier

The update operation is realized with the use of the REST PATCH operation. For that
purpose, a specialized type TroubleTicket_Update is provided. It consists of attributes limited to a
subset that includes only the Buyer updateable attributes.

The PATCH usage recommendation follows TMF 621 json/merge
(https://tools.ietf.org/html/rfc7386).

Figure 11 presents the model used in the PATCH request. The Seller responds with a
TroubleTicket type.

37 / 87

Figure 11: Patch request Model

[R29] The Buyer MUST include at least one of the following attributes of TroubleTicket_Update
in the PATCH request: [MEF113 R48]

externalId

priority

severity

issueStartDate

observedImpact

attachment - append only

38 / 87

note - append only
relatedContactInformation - append or modify the Buyer settable contacts
relatedIssue

[R30] The Buyer MUST add a note to a Trouble Ticket when any of the following attributes
are patched: [MEF113 R49]

priority

severity

issueStartDate

relatedIssue

[R31] If the new item in the attachment list is provided, either the attachment.url or
(attachment.content and attachment.mimeType) MUST be specified. [MEF113! R54]

[R32] The Buyer MUST NOT modify or delete any items provided by the Seller in
following lists: note, attachment, relatedContactInformation, or relatedIssue. [MEF113 R51], [MEF113
R52]

Note: The Buyer can add or update items in the above-mentioned lists by providing a full
list of existing items, and appending them with new ones or updating values of existing ones
(where possible).

Note: As stated before, items to the attachment and note lists may only be added.

[R33] In case id does not allow to find a TroubleTicket that is to be updated in Seller's system,
an error response Error404 MUST be returned. [MEF113 R53]

[R34] The Seller MUST return an error (Error422) if attributes requested to be changed by the
Buyer cannot be updated. [MEF113 R54]

[R35] The Seller MUST return an error (Error422) if the Ticket state is closed, assessingCancellation
or cancelled. [MEF113 R55]

The example below shows a request to patch a TroubleTicket that was created in section 6.1.3.
The first snippet provides the existing state of the TroubleTicket, showing only parts that are to
be updated:

{
 ...
 "note": [
 {<< provided by the Buyer >>
 "id": "note-1",
 "author": "John Example",
 "date": "2021-06-02T14:25:11.090Z",
 "source": "buyer",
 "text": "Couldn't reach the support on phone."
 }
],
 "relatedContactInformation": [
 {<< provided by the Buyer >>
 "emailAddress": "john.example@example.com",

39 / 87

 "name": "John Example",
 "number": "+12-345-678-90",
 "organization": "Buyer Example Co.",
 "role": "reporterContact"
 },
 {<< a new item appended by the Seller >>
 "emailAddress": "Seller.TicketContact@example.com",
 "name": "Seller Ticket Contact",
 "number": "+98-765-432-10",
 "organization": "Seller Example Co.",
 "role": "sellerTicketContact"
 }
],
 ...
}

The request below aims to:

add a new note (existing cannot be modified or deleted)
change details of Buyer's reporterContact

{
 "note": [
 {<<previously existing>>
 "id": "note-1",
 "author": "John Example",
 "date": "2021-06-02T14:25:11.090Z",
 "source": "buyer",
 "text": "Couldn't reach the support on phone."
 },
 {<<added new note>>
 "id": "note-2",
 "author": "Kate Example",
 "date": "2021-06-02T19:25:11.090Z",
 "source": "buyer",
 "text": "Support reached after 5 hours"
 }
],
 "relatedContactInformation": [
 {<< update details of reporterContact >>
 "emailAddress": "Kate.example@example.com",
 "name": "Kate Example",
 "number": "+12-345-678-91",
 "organization": "Buyer Example Co.",
 "role": "reporterContact"
 },
 {<< provided by Seller - untouched >>
 "emailAddress": "Seller.TicketContact@example.com",
 "name": "Seller Ticket Contact",
 "number": "+98-765-432-10",
 "organization": "Seller Example Co.",
 "role": "sellerTicketContact"
 }
]
}

[R36] The Seller MUST NOT delete item from the workOrder list. [MEF113 R57]

[R37] If the Trouble Ticket status was pending, the Seller MUST update it to inProgress.
[MEF113 R60]

6.5. Use case 5: Cancel Ticket by Ticket Identifier

The Buyer may request to cancel a Trouble Ticket by using POST /troubleTicket/{{id}}/cancel
endpoint. This operation only requires providing the id in the path and has an empty 204

40 / 87

confirmation response.

The sequence diagram below presents this use case in detail.

Figure 12: Cancel Trouble Ticket Flow

The Seller verifies the request, then searches for a Trouble Ticket to be cancelled by given
id. If found, the status is verified (acknowledged, inProgress or pending allowed). If everything is
verified correctly, the Seller moves the ticket to the assessingCancellation status, sends a
successful response to a cancellation request followed by troubleTicketStatusChangeEvent and starts
assessing the cancellation process for the ticket. After successful assessment, the ticket
moves to cancelled status and another troubleTicketStatusChangeEvent is sent.

[R38] In case of a successful validation of the cancel request, the Seller MUST move the
ticket to assessingCancellation status. [MEF113 R64]

[R39] In case id does not allow to find a TroubleTicket that is to be cancelled, an error response
Error404 MUST be returned. [MEF113 R62]

[R40] In case the TroubleTicket is in one of statuses: resolved, closed, reopened, assessingCancellation, or
cancelled the Seller MUST return an error (Error422). [MEF113 R63]

6.6 Use Case 6: Ticket Resolution Confirmation

As shown in Figure 6, the Seller after resolving the Issue moves the Trouble Ticket to a
resolved state. The Seller sends the troubleTicketResolvedEvent - a dedicated notification type. This
is the point where the Buyer verifies the resolution and chooses to either close or reopen the
Trouble Ticket. The Buyer uses one of the dedicated actions:

POST /troubleTicket/{{id}}/close

41 / 87

POST /troubleTicket/{{id}}/reopen

Figure 13: Ticket Resolution Confirmation Flow

[R41] The Buyer MUST perform the reopen action if the Issue on which the Ticket was based
has not been resolved in a satisfactory manner to the Buyer. [MEF113 R65]

[R42] The Buyer MUST perform the close action if the Issue on which the Ticket was based
has been resolved in a satisfactory manner to the Buyer. [MEF113 R65]

[R43] If performing the reopen action, the Buyer MUST include a reason describing why the
Buyer doesn't agree that the Trouble Ticket has been resolved in a satisfactory manner and is
requesting the Trouble Ticket to be reopened. [MEF113 R66]

[R44] In case id does not allow to find a TroubleTicket that is to be reopened or closed, an error
response Error404 MUST be returned. [MEF113 R67]

[R45] If Buyer performs the reopen action, the Seller MUST change the Ticket status to
reopened. [MEF113 R69]

[R46] If Buyer performs the reopen action, the Seller MUST add the reason (provided by the
Buyer) to the note list of the Ticket with note.source=buyer and note.author=closureRejection. [MEF113
R68]

[R47] If Buyer performs the close action, the Seller MUST change the Ticket status to closed.
[MEF113 R70]

42 / 87

Note: The Seller will return an error if the Buyer responds to the troubleTicketResolvedEvent after
the Ticket was closed due to the expiration of the pre-agreed timeframe/timeout for the
Buyer to confirm that the Issue on which the Ticket was based has been resolved
satisfactorily.

6.7. Use Case 15: Retrieve Incident List

[O7] The Buyer MAY retrieve a list of Incidents by using a GET /incident operation with
desired filtering criteria. The attributes that are available to be used are: [MEF113 O20]

priority

severity

impact

incidentType

status

relatedEntityId

relatedEntityType

creationDate.gt

creationDate.lt

situationStartDate.gt

situationStartDate.lt

expectedClosedDate.gt

expectedClosedDate.lt

closedDate.gt

closedDate.lt

The example of making a request and using pagination is provided in section 6.2 Please
refer to it as the rules also apply to this case.

[R48] The Seller MUST put the following attributes (if set) into the Incident_Find object in the
response: [MEF113 R126]:

id

relatedEntity

description

priority

severity

impact

incidentType

status

creationDate

situationStartDate

expectedClosedDate

closedDate

43 / 87

[R49] In case no items matching the criteria are found, the Seller MUST return a valid
response with an empty list. [MEF 113* R127]

Figure 14: Use Case 15: Retrieve Incident List - Model

6.8. Use Case 16: Retrieve Incident by Incident Identifier

The Buyer can get detailed information about the Incident from the Seller by using a GET
/incident/{{id}} operation.

[R50] In case id does not allow to find an Incident instance, an error response Error404 MUST
be returned. [MEF113 R129]

[R51] The Seller MUST put the following attributes into the Incident object in the response:
[MEF113 R131]

id

relatedEntity

description

priority

severity

impact

incidentType

status

situationStartDate

creationDate

relatedContactInformation - items with role equal to incidentContact

[R52] The Seller MUST provide all remaining optional attributes if they are set. [MEF113
R132]

44 / 87

[R53] The Seller's response to a Retrieve Incident by Incident Identifier request MUST
include the closedDate if the status is closed. [MEF113 R133]

Table 10 presents the mapping between the API status names and the MEF 113 naming,
together with their description.

status MEF 113 name Description

created CREATED A new Incident has been created and allocated a unique id.

inProgress IN_PROGRESS The Incident is in the process of being handled by the Seller.

closed CLOSED
The Situation described in the Incident was closed by the
Seller. This is a terminal state.

Table 10: Incident states

Figure 15 presents the Incident state machine:

Figure 15: Incident State Machine

[R54] The Seller MUST support all Incident statuses and their associated transitions as
described in Figure 15 and Table 10. [MEF113 R167]

45 / 87

Figure 16: Use Case 16: Incident Model

{
 "id": "00001111-4321-6666-7777-000000003333",
 "href": "{{baseUrl}}/incident/00001111-4321-6666-7777-000000003333",
 "attachment": [
 {
 "attachmentId": "att-002",
 "author": "Kate Example",
 "creationDate": "2022-01-02T14:21:11.090Z",
 "description": "Print screen from the assurance system",
 "mimeType": "image/jpeg",
 "name": "Alarm",
 "url": "https://example.com/documents/00000000-5555-4444-3333-222211110000",
 "size": {
 "amount": 2.6,
 "units": "MBYTES"
 },
 "source": "seller"
 }
],
 "creationDate": "2022-01-12T23:09:44.814Z",
 "description": "Hardware failure",
 "expectedClosedDate": "2022-01-13T23:09:44.814Z",
 "impact": "down",
 "incidentType": "repair",
 "situationStartDate": "2022-01-12T23:09:44.814Z",
 "priority": "critical",
 "relatedContactInformation": [
 {
 "emailAddress": "Incident.Contact@example.com",
 "name": "Incident Contact",
 "number": "+98-765-432-10",
 "organization": "Seller Example Co.",
 "role": "incidentContact"
 }
],
 "relatedEntity": [
 {
 "id": "01494079-6c79-4a25-83f7-48284196d44d",
 "role": "Affected Product",
 "@referredType": "Product"
 }
],

46 / 87

 "relatedIssue": [
 {
 "@referredType": "TroubleTicket",
 "creationDate": "2022-01-12T23:09:44.815Z",
 "description": "Reported failure is causing referred Trouble Ticket",
 "id": "00000000-4444-5555-6666-000000000987",
 "relationshipType": "causes",
 "source": "seller"
 }
],
 "severity": "extensive",
 "status": "created"
}

6.9. Use case 17: Register for Event Notifications

[R55] The Seller MUST support Event Notifications. [MEF113 R134]

[R56] The Seller MUST support all of TroubleTicketEventType: [MEF113 R135]

troubleTicketAttributeValueChangeEvent

troubleTicketInformationRequiredEvent

troubleTicketResolvedEvent

troubleTicketStatusChangeEvent

[R57] The Buyer MUST support and register for all TroubleTicketEventType. [MEF113 R136]

To register for notifications the Buyer uses the registerListener operation from the API: POST
/hub. The request model contains only 2 attributes:

callback - mandatory, to provide the callback address the events will be notified to,
query - optional, to provide the required types of event.

The usage of a combination of these attributes fulfills the [MEF113 R137], [MEF113 R138],
[MEF113 R139] requirements.

By using a simple request:

{
 "callback": "https://buyer.com/listenerEndpoint"
}

The Buyer subscribes for notification of all types of events. Those are:

troubleTicketAttributeValueChangeEvent

troubleTicketInformationRequiredEvent

troubleTicketResolvedEvent

troubleTicketStatusChangeEvent

incidentCreateEvent

incidentAttributeValueChangeEvent

incidentStatusChangeEvent

47 / 87

If the Buyer wishes to receive only notification of a certain type, a query must be added:

{
 "callback": "https://buyer.com/listenerEndpoint",
 "query": "eventType=troubleTicketResolvedEvent"
}

If the Buyer wishes to subscribe to 2 different types of events, there are 2 possible syntax
variants [TMF630]:

eventType=troubleTicketResolvedEvent,troubleTicketStatusChangeEvent

or

eventType=troubleTicketResolvedEvent&eventType=troubleTicketStatusChangeEvent

The query formatting complies to RCF3986 RFC3986. According to it, every attribute
defined in the Event model (from notification API) can be used in the query. However, this
standard requires only eventType attribute to be supported.

[R58] eventType is the only attribute that the Seller MUST support in the query.

The Seller responds to the subscription request by adding the id of the subscription to the
message that must be further used for unsubscribing.

{
 "id": "00000000-0000-0000-0000-000000000678",
 "callback": "https://buyer.com/listenerEndpoint",
 "query": "eventType=troubleTicketResolvedEvent"
}

Example of a final address that the Notifications will be sent to (for Sonata,
troubleTicketResolvedEvent):

https://buyer.com/listenerEndpoint/mefApi/sonata/troubleTicketNotification/v2/listener/troubleTicketResolvedEv

ent

6.10. Use case 18: Send Event Notification

Notifications are used to asynchronously inform the Buyer about the respective objects and
attributes changes. The Seller's synchronous response to a Trouble Ticket create requests are
considered to act as a Create Notification so there is no explicit respective Create
Notification type. The next notification must be sent when the state changes compared to the
previously sent one.

48 / 87

[R59] The Seller MUST send Notifications of eventTypes to Buyers who have registered for
them. [MEF113 R141]

[R60] The Seller MUST NOT send Notifications for eventTypes to Buyers who have not
registered for them. [MEF113 R140]

The Figure below shows all entities involved in the Notification use cases.

Figure 17: Use Case 18. Notification Data Model

The following snippet presents an example of troubleTicketResolvedEvent

{
 "eventId": "event-001",
 "eventType": "troubleTicketResolvedEvent",
 "eventTime": "2021-06-03T15:56:08.559Z",
 "event": {
 "id": "00000000-4444-5555-6666-000000000987"
 }
}

Note: the body of the event carries only the source object's id. The Buyer needs to query it
later by id to get details.

To stop receiving events, the Buyer has to use the unregisterListener operation from the DELETE
/hub/{id} endpoint. The id is the identifier received from the Seller during the listener
registration.

The table below presents the mapping between the API Notification types' names and the
ones in MEF 113 together with event descriptions. The inconsistencies are caused by API
naming convention and using the TMF event types as the base for this API.

API name MEF 113 name Description

49 / 87

API name MEF 113 name Description

troubleTicketAttributeValueChangeEvent TICKET_UPDATE

The Seller settable attributes
for a Ticket were updated by
the Seller. Note: Buyer
initiated Ticket updates due to
Patch operation will not
trigger a
troubleTicketAttributeValueChangeEvent

troubleTicketInformationRequiredEvent TICKET_STATE_CHANGE
A Ticket status was changed
by the Seller.

troubleTicketResolvedEvent TICKET_INFO_REQUIRED

The Seller requires more
information from the Buyer
for a Ticket to continue
processing a Ticket. The
details on what information is
needed from the Buyer will be
provided via a Ticket note. The
Ticket status is pending. Note:
The Buyer uses the Patch
operation to provide more
information for a Ticket.

troubleTicketStatusChangeEvent TICKET_RESOLVED

The Seller is informing the
Buyer the Ticket is resolved
and the Buyer to verify that
the Issue on which the Ticket
was based is no longer
observed. The Ticket status is
resolved. Note: The Buyer
confirms if the Issue has been
resolved satisfactorily or not
using close or reopen
operations

incidentCreateEvent INCIDENT_CREATE
A new Incident was created
by the Seller.

incidentAttributeValueChangeEvent INCIDENT_UPDATE
An open Incident was updated
by the Seller.

incidentStatusChangeEvent INCIDENT_STATE_CHANGE
An Incident status was
changed by the Seller.

Table 11. Notification types mapping

50 / 87

[R61] The Seller MUST send a troubleTicketAttributeValueChangeEvent whenever the Seller updates
any of the following Ticket attributes: [MEF113 R156]

sellerSeverity

sellerPriority

expectedResolutionDate

note

attachment

relatedContactInformation

relatedIssue

workOrder - including updates to a Referenced WorkOrder

[R62] The Seller MUST send a troubleTicketStatusChangeEvent whenever a Ticket status change
occurs. [MEF113 R157]

[R63] Whenever the Ticket status is changed to pending, the Seller MUST add a note to the
Ticket to inform the Buyer about what additional information is required for the Ticket or
for the Buyer to schedule an Appointment to continue processing the Ticket. [MEF113
R159]

[R64] The Seller MUST send a troubleTicketInformationRequiredEvent whenever the Ticket status has
been changed to pending and the appointmentRequired attribute for all WorkOrders linked to the
Ticket are false. [MEF113 R160]

[R65] If the appointmentRequired attribute for a Workorder is true, the Seller MUST set the status
of the Ticket associated to the Workorder to pending. [MEF113 R158]

[R66] The Seller MUST send an troubleTicketResolvedEvent whenever the Ticket status is changed
to resolved. [MEF113 R161]

[R67] The Seller MUST send an incidentCreateEvent whenever a new Incident has been created.
[MEF113 R168]

[R68] The Seller MUST send a incidentAttributeValueChangeEvent whenever the Seller updates any
of the Incident attributes (excluding status) [MEF113 R169]

[R69] The Seller MUST send a incidentStatusChangeEvent whenever an Incident status change
occurs. [MEF113 R170]

[R70] When the Incident status moves to inProgress, the Seller MUST set the expectedClosedDate.
[MEF113 R171]

[R71] The Seller MUST NOT send an IncidentEvent to a Buyer for an Incident impacting a
Product that the Seller has not activated on behalf of the Buyer. [MEF113 R172]

51 / 87

7. API Details

7.1. API patterns

7.1.1. Indicating errors

Erroneous situations are indicated by appropriate HTTP responses. An error response is
indicated by HTTP status 4xx (for client errors) or 5xx (for server errors) and the
appropriate response payload. The Product Order API uses the error responses as depicted
and described below.

Implementations can use HTTP error codes not specified in this standard in compliance with
rules defined in RFC 7231 [RFC7231]. In such a case, the error message body structure
might be aligned with the Error.

Figure 18. Data model types to represent an erroneous response

7.1.1.1. Type Error

Description: Standard Class used to describe API response error Not intended to be used
directly. The code in the HTTP header is used as a discriminator for the type of error returned
in runtime.

Name Type Description

message string
Text that provides mode details and corrective actions related to
the error. This can be shown to a client user.

reason* string
Text that explains the reason for the error. This can be shown to a
client user.

referenceError uri URL pointing to documentation describing the error

7.1.1.2. Type Error400

Description: Bad Request. (https://tools.ietf.org/html/rfc7231#section-6.5.1)

52 / 87

Inherits from:

Error

Name Type Description

code* Error400Code

One of the following error codes:
- missingQueryParameter: The URI is missing a required query-
string parameter
- missingQueryValue: The URI is missing a required query-string
parameter value
- invalidQuery: The query section of the URI is invalid.
- invalidBody: The request has an invalid body

7.1.1.3. enum Error400Code

Description: One of the following error codes:

missingQueryParameter: The URI is missing a required query-string parameter
missingQueryValue: The URI is missing a required query-string parameter value
invalidQuery: The query section of the URI is invalid.
invalidBody: The request has an invalid body

7.1.1.4. Type Error401

Description: Unauthorized. (https://tools.ietf.org/html/rfc7235#section-3.1)

Inherits from:

Error

Name Type Description

code* Error401Code
One of the following error codes:
- missingCredentials: No credentials provided.
- invalidCredentials: Provided credentials are invalid or expired

7.1.1.5. enum Error401Code

Description: One of the following error codes:

missingCredentials: No credentials provided.
invalidCredentials: Provided credentials are invalid or expired

7.1.1.6. Type Error403

53 / 87

Description: Forbidden. This code indicates that the server understood the request but
refuses to authorize it. (https://tools.ietf.org/html/rfc7231#section-6.5.3)

Inherits from:

Error

Name Type Description

code* Error403Code

This code indicates that the server understood the request but
refuses to authorize it because of one of the following error
codes:
- accessDenied: Access denied
- forbiddenRequester: Forbidden requester
- tooManyUsers: Too many users

7.1.1.7. enum Error403Code

Description: This code indicates that the server understood the request but refuses to
authorize it because of one of the following error codes:

accessDenied: Access denied
forbiddenRequester: Forbidden requester
tooManyUsers: Too many users

7.1.1.8. Type Error404

Description: Resource for the requested path not found.
(https://tools.ietf.org/html/rfc7231#section-6.5.4)

Inherits from:

Error

Name Type Description

code* string
The following error code:
- notFound: A current representation for the target resource not found

7.1.1.9. Type Error409

Description: Conflict (https://datatracker.ietf.org/doc/html/rfc7231#section-6.5.8)

Inherits from:

Error

54 / 87

Name Type DescriptionName Type Description

code* string
The following error code: - conflict: The client has provided a value
whose semantics are not appropriate for the property.

7.1.1.10. Type Error422

The response for HTTP status 422 is a list of elements that are structured using the Error422
data type. Each list item describes a business validation problem. This type introduces the
propertyPath attribute which points to the erroneous property of the request, so that the Buyer
may fix it easier. It is highly recommended that this property should be used, yet remains
optional because it might be hard to implement.

Description: Unprocessable entity due to a business validation problem.
(https://tools.ietf.org/html/rfc4918#section-11.2)

Inherits from:

Error

Name Type Description

code* Error422Code

One of the following error codes:
- missingProperty: The property the Seller has expected is
not present in the payload
- invalidValue: The property has an incorrect value
- invalidFormat: The property value does not comply with
the expected value format
- referenceNotFound: The object referenced by the
property cannot be identified in the Seller system
- unexpectedProperty: Additional property, not expected
by the Seller has been provided
- tooManyRecords: the number of records to be provided
in the response exceeds the Seller's threshold.
- otherIssue: Other problem was identified (detailed
information provided in a reason)

propertyPath string

A pointer to a particular property of the payload that
caused the validation issue. It is highly recommended that
this property should be used. Defined using JavaScript
Object Notation (JSON) Pointer
(https://tools.ietf.org/html/rfc6901).

7.1.1.11. enum Error422Code

Description: One of the following error codes:

55 / 87

missingProperty: The property the Seller has expected is not present in the payload
invalidValue: The property has an incorrect value
invalidFormat: The property value does not comply with the expected value format
referenceNotFound: The object referenced by the property cannot be identified in the
Seller system
unexpectedProperty: Additional property, not expected by the Seller has been provided
tooManyRecords: the number of records to be provided in the response exceeds the
Seller's threshold.
otherIssue: Other problem was identified (detailed information provided in a reason)

7.1.1.12. Type Error500

Description: Internal Server Error. (https://tools.ietf.org/html/rfc7231#section-6.6.1)

Inherits from:

Error

Name Type Description

code* string
The following error code:
- internalError: Internal server error - the server encountered an
unexpected condition that prevented it from fulfilling the request.

7.1.1.13. Type Error501

Description: Not Implemented. Used in case Seller is not supporting an optional operation
(https://tools.ietf.org/html/rfc7231#section-6.6.2)

Inherits from:

Error

Name Type Description

code* string
The following error code:
- notImplemented: Method not supported by the server

7.1.2. Response pagination

A response to retrieve a list of results (e.g. GET /productOfferingQualification) can be paginated.
The Buyer can specify following query attributes related to pagination:

limit - number of expected list items
offset - offset of the first element in the result list

56 / 87

The Seller returns a list of elements that comply with the requested limit. If the requested
limit is higher than the supported list size the smaller list result is returned. In that case, the
size of the result is returned in the header attribute X-Result-Count. The Seller can indicate that
there are additional results available using:

X-Total-Count header attribute with the total number of available results
X-Pagination-Throttled header set to true

[R72] Seller MUST use either X-Total-Count or X-Pagination-Throttled to indicate that the page was
truncated and additional results are available.

7.2. Management API Data model

Figure 19 presents the whole Trouble Ticket Management data model the data types,
requirements related to them, and mapping to MEF 113 specifications are discussed later in
this section.

Figure 19: Trouble Ticket Management Data Model

7.2.1. TroubleTicket

7.2.1.1. Type TroubleTicket_Common

Description: A Trouble Ticket is a record of an issue that is created, tracked, and managed
by a Trouble Ticket management system Skipped properties: id,href

Name Type Description MEF 113

attachment AttachmentValue[]

Attachments to the Ticket,
such as a file, screen shot or
embedded content.
Attachments may be added but
may not be modified or
deleted (for historical
reasons).

Attachm

57 / 87

Name Type Description MEF 113

description* string
Summarized description of the
Issue the Buyer is
experiencing.

Descripti

externalId string

Identifier provided by the
Buyer to allow the Buyer to
use as a search attribute in
Retrieve Ticket List.

Buyer
Ticket
Identifier

issueStartDate date-time

The date indicating when the
Buyer first observed the Issue,
to provide the Seller with
additional insight.

Issue Sta
Date

note Note[]

A set of comments or
information associated to the
Ticket. This list can be empty.
Notes may be added but may
not be modified or deleted (for
historical reasons).

Notes

observedImpact* MEFObservedImpactType
The type of impact observed
by the Buyer.

Observed
Impact

priority* TroubleTicketPriorityType

The priority of the Trouble
Ticket and how quickly the
issue should be resolved.
Example: Critical, High,
Medium, Low. The value is set
by the ticket management
system considering the
severity, ticket type etc...

Priority

58 / 87

Name Type Description MEF 113

relatedContactInformation* RelatedContactInformation[]

Party playing a role for this
Trouble Ticket. The 'role' is to
specify the type of contact as
specified in MEF 113:
Reporter Contact
('role=reporterContact') -
REQUIRED in the request
Buyer Technical Contacts
('role=buyerTechnicalContact')
Seller Ticket Contact
('role=sellerTicketContact')
Seller Technical Contact
('role=sellerTechnicalContact')

Reporter
Contact,
Buyer
Technica
Contacts
Seller
Ticket
Contact,
Seller
Technica
Contacts

relatedEntity* RelatedEntity[]

An entity that is related to the
ticket such as a bill, a product,
etc. The entity against which
the ticket is associated.

Product
Identifier

relatedIssue IssueRelationship[]

A list of Related Issue
relationships. Represents
relationships to other Trouble
Tickets and Incidents.

Related
Tickets A
Incidents

severity* TroubleTicketSeverityType
The severity or impact (ITIL)
of the Issue as evaluated by
the Buyer.

Severity

ticketType* TroubleTicketType
The presumed cause of the
Trouble Ticket as evaluated by
the Buyer.

Type

7.2.1.2. Type TroubleTicket_Create

Description: A Trouble Ticket is a record of an issue that is created, tracked, and managed
by a Trouble Ticket management system The modeling pattern introduces the Common
supertype to aggregate attributes that are common to both TroubleTicket and TroubleTicket_Create. It
this case the Create type has a subset of attributes of the response type and does not
introduce any new, thus the Create type has an empty definition.

Inherits from:

TroubleTicket_Common

7.2.1.3. Type TroubleTicket

59 / 87

Description: A Trouble Ticket is a record of an issue that is created, tracked, and managed
by a Trouble Ticket management system

Inherits from:

TroubleTicket_Common

Name Type Description MEF 113

creationDate* date-time
The date on which
the Trouble Ticket
was created

Ticket
Creation
Date

expectedResolutionDate date-time

The date provided
by the Seller to
indicate when the
Ticket is expected
to be resolved

Target
Resolved
Date

href string

Hyperlink, a
reference to the
Trouble Ticket
entity

Not
represented
in MEF
113

id* string

Unique (within
the Seller Ticket
domain) identifier
for the Ticket.

Ticket
Identifier

resolutionDate date-time

The date the
Ticket status was
set to resolved by
the Seller

Resolved
Date

sellerPriority* TroubleTicketPriorityType

The priority
(ITIL) is based on
the assessment of
the impact and
urgency of how
quickly the Ticket
should be
resolved after
evaluation by the
Seller of the
impact of the
Issue on the
Buyer.

Seller
Priority

60 / 87

Name Type Description MEF 113

sellerSeverity* TroubleTicketSeverityType

The severity or
impact (ITIL) of
the Issue on the
Buyer as
evaluated by the
Seller.

Seller
Severity

status* TroubleTicketStatusType
The current status
of the Trouble
Ticket

Ticket
State

statusChange TroubleTicketStatusChange[]

The status change
history that is
associated to the
ticket. Populated
by the Seller.

Not
represented
in MEF
113

workOrder WorkOrderRef[]

A reference to a
set of WorkOrders
to be performed
under the
responsibility of
Seller
technician(s) to
resolve the Ticket.

Workorders

7.2.1.4. Type TroubleTicket_Find

Description: This class represents a single list item for the response of listTroubleTicket
operation.

Name Type Description MEF 113

creationDate* date-time
The date on which
the Trouble Ticket
was created

Ticket
Creation
Date

description* string

Summarized
description of the
Issue the Buyer is
experiencing.

Description

61 / 87

Name Type Description MEF 113

expectedResolutionDate* date-time

The date provided
by the Seller to
indicate when the
Ticket is expected
to be resolved

Target
Resolved
Date

externalId* string

Additional
identifier coming
from an external
system

Buyer
Ticket
Identifier

id* string
Unique identifier
of the Trouble
Ticket

Ticket
Identifier

priority* TroubleTicketPriorityType

The priority (ITIL)
is based on the
assessment of the
impact and
urgency of how
quickly the Ticket
should be resolved
as evaluated by the
Buy-er. The
Priority is used by
the Seller to
determine the
order in which
Tickets get
resolved across
Buyers.

Priority

relatedEntity* RelatedEntity[]

An entity that is
related to the ticket
such as a bill, a
product, etc. The
entity against
which the ticket is
associated.

Product
Identifier

observedImpact* MEFObservedImpactType
The type of impact
observed by the
Buyer.

62 / 87

Name Type Description MEF 113

resolutionDate* date-time

The date the Ticket
status was set to
resolved by the
Seller

Resolved
Date

sellerPriority* TroubleTicketPriorityType

The priority (ITIL)
is based on the
assessment of the
impact and
urgency of how
quickly the Ticket
should be resolved
after evaluation by
the Seller of the
impact of the Issue
on the Buyer.

Seller
Priority

sellerSeverity* TroubleTicketSeverityType

The severity or
impact (ITIL) of
the Ticket on the
Buyer as evaluated
by the Seller.

Seller
Severity

severity* TroubleTicketSeverityType

The severity or
impact (ITIL) of
the Ticket as
evaluated by the
Buyer.

Severity

status* TroubleTicketStatusType
The current status
of the Trouble
Ticket

Not
represented
in MEF
113

ticketType* TroubleTicketType

The presumed
cause of the
Trouble Ticket as
evaluated by the
Buyer.

Type

7.2.1.5. Type TroubleTicket_Update

Description: A Trouble Ticket is a record of an issue that is created, tracked, and managed
by a Trouble Ticket management system

63 / 87

Name Type Description MEF 11Name Type Description MEF 11

attachment AttachmentValue[]
Attachments to the Ticket, such
as a file, screen shot or
embedded content.

Attachm

externalId string
Additional identifier coming
from an external system

Buyer T
Identifie

issueStartDate date-time

The date indicating when the
Buyer first observed the Issue, to
provide the Seller with
additional insight.

issueSta

note Note[]

A set of comments or
information associated to the
Ticket. This list can be empty.
Notes may be added but may not
be modified or deleted (for
historical reasons).

Notes

priority TroubleTicketPriorityType

The priority of the Trouble
Ticket and how quickly the issue
should be resolved. Example:
Critical, High, Medium, Low.
The value is set by the ticket
management system considering
the severity, ticket type etc...

Priority

relatedContactInformation RelatedContactInformation[]

Party playing a role for this
quote. If
`instantSyncQuote=false` then
the Buyer MUST specify Buyer
Contact Information
('role=buyerContactInformation')
and the Seller MUST specify
Seller Contact Information
('role=sellerContactInformation')

Reporte
Contact
Buyer
Technic
Contact
Seller T
Contact
Seller
Technic
Contact

relatedIssue IssueRelationship[]

A list of Related Issue
relationships. Represents
relationships to other Trouble
Tickets and Incidents.

Related
Tickets
Incident

64 / 87

Name Type Description MEF 11

severity TroubleTicketSeverityType

The severity of the issue.
Indicate the implication of the
issue on the expected
functionality e.g. of a system,
application, service etc...

Not
represen
MEF 11

7.2.1.6. enum TroubleTicketPriorityType

Description: Possible values for the priority of the Trouble Ticket

Value

low

medium

high

critical

7.2.1.7. Type IssueRelationship

Description: Represents relationships to other Trouble Tickets and Incidents

Name Type Description MEF 113

@referredType* string
The type of the referred Issue
(Incident or TroubleTicket)

Related
Ticket Or
Incident
Type

creationDate* date-time
The date the relationship was
created

Relation
Creation
Date

description* string
A description of the reason for
the Relation Source to set the
relationship

Relation
Reason
Description

href string
Reference of the Trouble Ticket
or Incident

Not
represented
in MEF 113

id* string
Unique identifier of the
referenced Issue (Trouble
Ticket od Incident)

Related
Ticket Or
Incident
Identifier

65 / 87

Name Type Description MEF 113

relationshipType* string

Type of the Trouble Ticket
relationship can be blocks,
depends on, duplicates, causes,
etc...

Relation
Type

source* MEFBuyerSellerType
Indicates if this Related Issue
was added by the Buyer or the
Seller.

Relation
Source

7.2.1.8. enum TroubleTicketSeverityType

Description: Possible values for the severity of the Trouble Ticket

Value

minor

moderate

significant

extensive

7.2.1.9. enum MEFObservedImpactType

Description: An enumeration of the possible values of impact observed by the Buyer.

degraded: When the Product is impacted and not meeting the Product specifications.
intermittent: When the Product is not operational as intended on an intermittent basis.
down: When the Product is non-operational.

Value

degraded

intermittent

down

7.2.1.10. Type TroubleTicketStatusChange

Description: Holds the status notification reasons and associated date the status changed,
populated by the server

Name Type Description MEF 113

changeDate date-time
The date and time the
status changed.

Not represented in
MEF 113

66 / 87

Name Type Description MEF 113

changeReason string
The reason why the
status changed.

Not represented in
MEF 113

status TroubleTicketStatusType Reached status
Not represented in
MEF 113

7.2.1.11. enum TroubleTicketStatusType

Description: Possible values for the status of the Trouble Ticket

status MEF 113 name Description

acknowledged ACKNOWLEDGED

A request to create a Ticket was
received and accepted by the Seller.
The Ticket create request has been
validated and a Ticket has been
created by the Seller and allocated
a unique id.

assessingCancellation ASSESSING_CANCELLATION

A request has been made by the
Buyer to cancel the Ticket and is
being assessed by the Seller to
determine whether to just close the
Ticket, or continue to resolve the
Issue to prevent similar Create
Ticket requests from other Buyers.
If the Seller chooses to resolve the
Issue, the Seller might create an
Incident or an internal Ticket for
the Issue, but that is outside the
scope of this document. After the
Seller has completed the
assessment, the Seller updates the
Ticket State to cancelled.

cancelled CANCELLED

The Ticket has been successfully
cancelled by the Buy-er. The Buyer
will receive no further Event
Notifications for the Ticket. This is
a terminal state.

67 / 87

status MEF 113 name Description

closed CLOSED

The Buyer has confirmed that the
Issue they reported is no longer
observed, or the pre-defined time
frame (agreed upon between Buyer
and Seller) for confirming that the
Issue has been resolved has passed
without a response by the Buyer.
This is a terminal state.

inProgress IN_PROGRESS
The Ticket is in the process of
being handled and investigated for
resolution by the Seller.

pending PENDING

The Seller is waiting on the Buyer
to provide additional information
for the Ticket, or the Buyer to
schedule an Appointment for the
WorkOrder (linked to the Ticket) in
order to continue processing the
Ticket. This may result in the clock
being stopped for the service level
agreement until the Buyer has
responded to the request.

reopened REOPENED

The Buyer has verified that the
Issue described in the Ticket is still
observed and has not been resolved
satisfactorily. The Buyer rejects the
Seller's request to close the Ticket.
The Ticket has been reopened and
is waiting for further actions from
the Seller.

resolved RESOLVED

The Buyer's Issue described in the
Ticket was resolved by the Seller.
The Seller assumes that normal
operation is re-established for the
Buyer's product and i snow waiting
for the Buyer to confirm that the
Issue they reported is no longer
observed.

7.2.1.12. enum TroubleTicketType

68 / 87

Description: Possible values for the type of the Trouble Ticket:

assistance: Requesting help for a situation (not a failure) requiring attention that is not
categorized.
information: Buyer is requesting information on the Issue
installation: Related to installation issue. Provisioning is complete, but Product is not
operational.
maintenance: Any scheduled or non-scheduled maintenance related Issue.

Value MEF 113

assistance ASSISTANCE

information INFORMATION

installation INSTALLATION

maintenance MAINTENANCE

7.2.1.13. Type Reason

Description: An object to convey a reason for the operation.

Name Type Description MEF 113

reason* string
A text description of why given operation was
requested.

Closure Rejection
Reason

7.2.1.14. Type WorkOrderRef

Description: A reference to an WorkOrder resource.

Name Type Description MEF 113

href string Hyperlink to the referenced WorkOrder. Not represented in MEF 113

id* string Identifier of the referenced WorkOrder. Workorder Identifier

7.2.2. Incident

7.2.2.1. Type Incident

Description: An Incident is a record of an issue that is not part of normal operation in the
Seller's network that has a possible negative impact on the operability of the network on one
or more Buyers.

Name Type Description MEF

69 / 87

Name Type Description MEF

attachment AttachmentValue[]

Attachments to the Ticket, such
as a file, screenshot, or
embedded content. Attachments
may be added but may not be
modified or deleted (for
historical reasons).

Attach

closedDate date-time
The date the Incident status was
set to closed by the Seller

Incide
Closed

creationDate* date-time
The date on which the Incident
was created

Incide
Creatio
Date

description* string Description of the Incident Descri

expectedClosedDate date-time
The date provided by the Seller
to indicate when the Incident is
expected to be closed.

Incide
Expec
Closed

href string
Hyperlink, a reference to the
Incident entity

Not
represe
in ME

id* string
Unique (within the Seller
domain) identifier for the
Incident.

Incide
Identif

impact* MEFObservedImpactType
The type of impact observed by
the Buyer.

Incide
Impac

incidentType* IncidentType
The presumed cause of the
Incident as evaluated by the
Seller.

Incide
Type

note Note[]

A set of unstructured comments
or information associated to the
Incident. Notes may be added
but may not be modified or
deleted (for historical reasons).

Incide
Notes

priority* TroubleTicketPriorityType

The priority (ITIL) is based on
the assessment of the impact and
urgency of how quickly the
Incident should be resolved after
evaluation by the Seller of the
impact of the Incident.

Incide
Priorit

70 / 87

Name Type Description MEF

relatedContactInformation* RelatedContactInformation[]

Party playing a role in this
Incident. The 'role' is to specify
the type of contact as specified
in MEF 113: Incident Contact
('role=incidentContact') -
REQUIRED to be set by the
Seller Incident Technical Contact
('role=incidentTechnicalContact')

Incide
Contac
Incide
Techni
Contac

relatedEntity* RelatedEntity[]

A set of identifiers of the
Products on which the Incident
could have an impact on the
normal operation.

Produc
Identif

relatedIssue IssueRelationship[]

A list of Related Issue
relationships. Represents
relationships to other Trouble
Tickets and Incidents.

Incide
Relate
Ticket
Incide

severity* TroubleTicketSeverityType
The severity or impact (ITIL) of
the Incident as evaluated by the
Seller.

Incide
Severi

situationStartDate* date-time
The date when the situation was
first identified, for example via
error logs.

status* IncidentStatusType The current status of the Incident
Incide
State

statusChange IncidentStatusChange[]
The status change history that is
associated to the Incident.
Populated by the Seller.

Not
represe
in ME

7.2.2.2. Type Incident_Find

Description: This class represents a single list item for the response of listIncident operation.

Name Type Description MEF 113

closedDate date-time
The date the Incident
status was set to closed
by the Seller

Incident
Closed
Date

creationDate* date-time
The date on which the
Incident was created

Incident
Creation
Date

71 / 87

Name Type Description MEF 113

description* string
Description of the
Incident

Description

expectedClosedDate date-time

The date provided by
the Seller to indicate
when the Incident is
expected to be closed.

Incident
Expected
Closed
Date

href string
Hyperlink, a reference
to the Incident entity

Not
represented
in MEF
113

id* string
Unique (within the
Seller domain) identifier
for the Incident.

Incident
Identifier

impact* MEFObservedImpactType
The type of impact
observed by the Buyer.

Incident
Impact

incidentType* IncidentType
The presumed cause of
the Incident as
evaluated by the Seller.

Incident
Type

situationStartDate date-time

The date when the
Incident was first
identified, for example
via error logs.

Situation
Start Date

priority* TroubleTicketPriorityType

The priority (ITIL) is
based on the assessment
of the impact and
urgency of how quickly
the Incident should be
resolved after
evaluation by the Seller
of the impact of the
Incident.

Incident
Priority

relatedEntity* RelatedEntity[]

An entity that is related
to the Incident such as a
service, a product, etc.
The entity which the
Incident is associated
with.

Product
Identifier

72 / 87

Name Type Description MEF 113

severity* TroubleTicketSeverityType
The severity or impact
(ITIL) of the Incident as
evaluated by the Seller.

Incident
Severity

status* IncidentStatusType
The current status of the
Incident

Incident
State

7.2.2.3. enum IncidentType

Description: Possible values for the type of the Incident:

maintenance: Any scheduled or non-scheduled maintenance related Incident.

repair: Any non-scheduled Situation requiring repair by the Seller.

installation: Any installation related Situation requiring action by the Seller.

Value MEF 113

maintenance MAINTENANCE

repair REPAIR

installation INSTALLATION

7.2.2.4. enum IncidentStatusType

Description: Possible values for the status of the Incident

status MEF 113 name Description

closed CLOSED
The Situation described in the Incident was closed by the
Seller. This is a terminal state.

created CREATED A new Incident has been created and allocated a unique id.

inProgress IN_PROGRESS The Incident is in the process of being handled by the Seller.

7.2.2.5. Type IncidentStatusChange

Description: Holds the status notification reasons and associated date the status changed,
populated by the server

Name Type Description MEF 113

changeDate date-time
The date and time the status
changed.

Not represented in
MEF 113

73 / 87

Name Type Description MEF 113

changeReason string
The reason why the status
changed.

Not represented in
MEF 113

status IncidentStatusType Reached status
Not represented in
MEF 113

7.2.3. Common

Types described in this subsection are shared among two or more Cantata and Sonata APIs.

7.2.3.1. Type AttachmentValue

Description: Complements the description of an element (for instance a product) through
video, pictures...

Name Type Description MEF 113

attachmentId string
locally unique identifier to
distinguish items from the
Attachment list.

Not
represented
in MEF
113

author* string
The name of the person or
organization who added the
Attachment.

Attachment
Author

content string

The actual contents of the
attachment object, if embedded,
encoded as base64. Either url or
(content and mimeType) attributes
MUST be provided during creation.

Content

creationDate* date-time The date the Attachment was added.
Attachment
Date

description string
A narrative text describing the
content of the attachment

Description

mimeType string
Attachment mime type such as
extension file for video, picture and
document

Mime Type

name* string The name of the attachment
Attachment
Name

size MEFByteSize The size of the attachment. Size

74 / 87

Name Type Description MEF 113

source* MEFBuyerSellerType
Indicates if the attachment was
added by the Buyer or the Seller.

Attachment
Source

url string

URL where the attachment is
located. Either url or (content and
mimeType) attributes MUST be
provided during creation.

URL

7.2.3.2. enum DataSizeUnit

Description: The unit of measure in the data size.

Value

BYTES

KBYTES

MBYTES

GBYTES

TBYTES

PBYTES

EBYTES

ZBYTES

YBYTES

7.2.3.3. Type FieldedAddress

Description: A type of Address that has a discrete field and value for each type of boundary
or identifier down to the lowest level of detail. For example "street number" is one field,
"street name" is another field, etc. Reference: MEF 79 (Sn 8.9.2)

Name Type Description MEF 113

city* string
The city that the address
is in

City

country* string
Country that the address
is in

Country

geographicSubAddress GeographicSubAddress
Additional fields used to
specify an address, as
detailed as possible.

Not
represented
in MEF
113

75 / 87

Name Type Description MEF 113

locality string
The locality that the
address is in

Locality

postcode string

Descriptor for a postal
delivery area, used to
speed and simplify the
delivery of mail (also
known as zip code)

Postal
Code

postcodeExtension string

An extension of a postal
code. E.g. the part
following the dash in a
US urban property
address

Postal
Code
Extension

stateOrProvince string
The State or Province
that the address is in

State Or
Province

streetName* string
Name of the street or
other street type

Street
Name

streetNr string

Number identifying a
specific property on a
public street. It may be
combined with
streetNrLast for ranged
addresses. MEF 79
defines it as required
however as in certain
countries it is not used
we make it optional in
API.

Street
Number

streetNrLast string
Last number in a range of
street numbers allocated
to a property

Street
Number
Last

streetNrLastSuffix string
Last street number suffix
for a ranged address

Street
Number
Suffix Last

streetNrSuffix string
The first street number
suffix

Street
Number
Suffix

streetSuffix string
A modifier denoting a
relative direction

Street
Suffix

76 / 87

Name Type Description MEF 113

streetType string

The type of street (e.g.,
alley, avenue, boulevard,
brae, crescent, drive,
highway, lane, terrace,
parade, place, tarn, way,
wharf)

Street Type

7.2.3.4. Type GeographicSubAddress

Description: Additional fields used to specify an address, as detailed as possible.

Name Type Description MEF 113

buildingName string
Allows for identification of places
that require building name as part of
addressing information

Building
Name

id string Unique Identifier of the subAddress

Not
represented
in MEF
113

levelNumber string
Used where a level type may be
repeated e.g. BASEMENT 1,
BASEMENT 2

Level
Number

levelType string
Describes level types within a
building

Level Type

privateStreetName string

"Private streets internal to a
property (e.g. a university) may
have internal names that are not
recorded by the land title office

Private
Street
Name

privateStreetNumber string
Private streets numbers internal to a
private street

Private
Street
Number

subUnit MEFSubUnit[]

Representation of a MEFSubUnit It
is used for describing subunit within
a subaddress e.g.BERTH, FLAT,
PIER, SUITE, SHOP, TOWER,
UNIT, WHARF.

Not
represented
in MEF
113

7.2.3.5. enum MEFBuyerSellerType

77 / 87

Description: An enumeration with buyer and seller values.

Value MEF 113

buyer BUYER

seller SELLER

7.2.3.6. Type MEFByteSize

Description: A size represented by value and Byte units

Name Type Description MEF 113

amount float Numeric value in a given unit Value

units DataSizeUnit Byte Unit Unit

7.2.3.7. Type MEFGeographicPoint

Description: A MEFGeographicPoint defines a geographic point through coordinates.
Reference: MEF 79 (Sn 8.9.5)

Inherits from:

RelatedPlaceRefOrValue

Name Type Description MEF 113

spatialRef* string

The spatial reference system used to determine the
coordinates (e.g. "WGS84"). The system used and the
value of this field are to be agreed during the
onboarding process.

Spatial
Reference

x* string
The latitude expressed in the format specified by the
`spacialRef`

Latitude

y* string
The longitude expressed in the format specified by the
`spacialRef`

Longitude

z string
The elevation expressed in the format specified by the
`spacialRef`

Elevation

7.2.3.8. Type MEFSubUnit

Description: Allows for sub unit identification

Name Type Description
MEF
113

78 / 87

Name Type Description
MEF
113

subUnitNumber* string
The discriminator used for the subunit, often just a
simple number but may also be a range.

Sub
Unit
Name

subUnitType* string
The type of subunit e.g.BERTH, FLAT, PIER,
SUITE, SHOP, TOWER, UNIT, WHARF.

Sub
Unit
Type

7.2.3.9. Type Note

Description: Extra information about a given entity. Only useful in processes involving
human interaction. Not applicable for automated process.

Name Type Description MEF 113

author* string Author of the note
Note
Author

date* date-time Date of the note Note Date

id* string
Identifier of the note within its containing
entity (may or may not be globally unique,
depending on provider implementation)

Not
represented
in MEF
113

source* MEFBuyerSellerType
Indicates if this Note was added by the
Buyer or Seller.

Note
Source

text* string Text of the note Note Text

7.2.3.10. Type RelatedContactInformation

Description: Contact data for a person or organization that is involved in a given context. It
is specified by the Seller (e.g. Seller Contact Information) or by the Buyer.

Name Type Description MEF 113

emailAddress* string Email address
Contact email
Address

name* string Name of the contact Contact Name

number* string Phone number
Contract Phone
Number

79 / 87

Name Type Description MEF 113

numberExtension string Phone number extension
Contract Phone
Number
Extension

organization string
The organization or company
that the contact belongs to

Contact
Organization

postalAddress FieldedAddress
Identifies the postal address of
the person or office to be
contacted.

Contact Postal
Address

role* string
A role the party plays in a given
context.

Not represented
in MEF 113

7.2.3.11. Type RelatedEntity

Description: A reference to an entity, where the type of the entity is not known in advance.

Name Type Description MEF 113

@referredType* string
The actual type of the target instance when
needed for disambiguation.

Not represented
in MEF 113

href string Reference of the related entity.
Not represented
in MEF 113

id* string Unique identifier of a related entity.
Product
Identifier

role* string The role of an entity.
Not represented
in MEF 113

7.2.4. Notification registration

Notification registration and management are done through /hub API endpoint. The below
sections describe data models related to this endpoint.

7.2.4.1. Type EventSubscriptionInput

Description: This class is used to register for Notifications.

API name MEF 113 name Description

80 / 87

API name MEF 113 name Description

troubleTicketAttributeValueChangeEvent TICKET_UPDATE

The Seller settable attributes
for a Ticket were updated by
the Seller. Note: Buyer
initiated Ticket updates due to
Patch operation will not
trigger a
troubleTicketAttributeValueChangeEvent

troubleTicketInformationRequiredEvent TICKET_STATE_CHANGE
A Ticket status was changed
by the Seller.

troubleTicketResolvedEvent TICKET_INFO_REQUIRED

The Seller requires more
information from the Buyer
for a Ticket to continue
processing a Ticket. The
details on what information is
needed from the Buyer will be
provided via a Ticket note. The
Ticket status is pending. Note:
The Buyer uses the Patch
operation to provide more
information for a Ticket.

troubleTicketStatusChangeEvent TICKET_RESOLVED

The Seller is informing the
Buyer the Ticket is resolved
and the Buyer to verify that
the Issue on which the Ticket
was based is no longer
observed. The Ticket status is
resolved. Note: The Buyer
confirms if the Issue has been
resolved satisfactorily or not
using close or reopen
operations

incidentCreateEvent INCIDENT_CREATE
A new Incident was created
by the Seller.

incidentAttributeValueChangeEvent INCIDENT_UPDATE
An open Incident was updated
by the Seller.

incidentStatusChangeEvent INCIDENT_STATE_CHANGE
An Incident status was
changed by the Seller.

Name Type Description

81 / 87

Name Type Description

callback* string

This callback value must be set to *host* property from Buyer Notification API (tro
This property is appended with the base path and notification resource path specifie
which notification is sent. E.g. for "callback": "http://buyer.com/listenerEndpoint", t
will be sent to:
`http://buyer.com/listenerEndpoint/mefApi/sonata/troubleTicketNotification/v2/liste

query string

This attribute is used to define to which type of events to register to. Example: "que
troubleTicketStatusChangeEvent". To subscribe for more than one event type, put th
`eventType=troubleTicketStatusChangeEvent,troubleTicketResolvedEvent`. The po
'TroubleTicketEventType' in troubleTicketNotification.api.yaml. An empty query is
ending in subscription for all event types.

7.2.4.2. Type EventSubscription

Description: Sets the communication endpoint address the service instance must use to
deliver notification information

Name Type Description MEF 113

callback* string
The value provided by the Buyer in
`EventSubscriptionInput` during notification
registration

Notification Target
Information

id* string
An identifier of the event subscription assigned
by the Seller when a resource is created.

Not represented in
MEF 113

query string
This attribute is used to define notification
registration constraints.

List of Notification
Event Types, Action

7.3. Notification API Data model

Figure 20 presents the Trouble Ticket Management Notification data model.

82 / 87

Figure 20. Trouble Ticket Management Notification Data Model

This data model is used to construct requests and responses of the API endpoints described
in Section 5.2.2.

7.3.1. Type Event

Description: Event class is used to describe information structure used for notification.

Name Type Description MEF 113

eventId* string Id of the event Not represented in MEF 113

eventTime* date-time Datetime when the event occurred Not represented in MEF 113

7.3.2. Type TroubleTicketEvent

Description:

Inherits from:

Event

Name Type Description MEF 113

eventType* TroubleTicketEventType
Indicates the type of the
event.

Notification
Type

event* TroubleTicketEventPayload
A reference to the object that
is source of the notification.

Not
represented in
MEF 113

7.3.3. enum TroubleTicketEventType

Description: Type of the Trouble Ticket event.

83 / 87

API name MEF 113 name Description

troubleTicketAttributeValueChangeEvent TICKET_UPDATE

The Seller settable attributes
for a Ticket were updated by
the Seller. Note: Buyer
initiated Ticket updates due to
Patch operation will not
trigger a
troubleTicketAttributeValueChangeEvent

troubleTicketInformationRequiredEvent TICKET_STATE_CHANGE
A Ticket status was changed
by the Seller.

troubleTicketResolvedEvent TICKET_INFO_REQUIRED

The Seller requires more
information from the Buyer
for a Ticket to continue
processing a Ticket. The
details on what information is
needed from the Buyer will be
provided via a Ticket note. The
Ticket status is pending. Note:
The Buyer uses the Patch
operation to provide more
information for a Ticket.

troubleTicketStatusChangeEvent TICKET_RESOLVED

The Seller is informing the
Buyer the Ticket is resolved
and the Buyer to verify that
the Issue on which the Ticket
was based is no longer
observed. The Ticket status is
resolved. Note: The Buyer
confirms if the Issue has been
resolved satisfactorily or not
using close or reopen
operations

7.3.4. Type TroubleTicketEventPayload

Description: The identifier of the Trouble Ticket being subject of this event.

Name Type Description MEF 113

sellerId string
The unique identifier of the organization that is acting as
the Seller. MUST be specified in the request only when
requester entity represents more than one Seller.

Seller

84 / 87

Name Type Description MEF 113

id* string ID of the Trouble Ticket attributed by quoting system

Not
represented
in MEF
113

href string Hyperlink to access the Trouble Ticket

Not
represented
in MEF
113

buyerId string
The unique identifier of the organization that is acting as
the a Buyer. MUST be specified in the request only when
the responding represents more than one Buyer.

Buyer

7.3.5. Type IncidentEvent

Description:

Inherits from:

Event

Name Type Description MEF 113

eventType* IncidentEventType Indicates the type of the event.
Notification
Type

event* IncidentEventPayload
A reference to the object that is
source of the notification.

Not represented
in MEF 113

7.3.6. Type IncidentEventPayload

Description: The identifier of the Incident being subject of this event.

Name Type Description MEF 113

sellerId string
The unique identifier of the organization that is acting as
the Seller. MUST be specified in the request only when
requester entity represents more than one Seller.

Seller

id* string ID of the Incident attributed by quoting system

Not
represented
in MEF
113

85 / 87

Name Type Description MEF 113

href string Hyperlink to access the Incident

Not
represented
in MEF
113

buyerId string
The unique identifier of the organization that is acting as
the a Buyer. MUST be specified in the request only when
the responding represents more than one Buyer.

Buyer

7.3.7. enum IncidentEventType

Description: Type of the Incident event.

API name MEF 113 name Description

incidentCreateEvent INCIDENT_CREATE
A new Incident was created
by the Seller.

incidentAttributeValueChangeEvent INCIDENT_UPDATE
An open Incident was
updated by the Seller.

incidentStatusChangeEvent INCIDENT_STATE_CHANGE
An Incident status was
changed by the Seller.

86 / 87

8. References

[OAS-v3] Open API 3.0, February 2020
[MEF55.1] MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture
and Framework, February 2021
[MEF79] MEF 79, Address, Service Site, and Product Offering Qualification
Management, Requirements and Use Cases, November 2019
[MEF80] MEF 80, Quote Management Requirements and Use Cases, July 2021
[MEF113] MEF 113 Trouble Ticketing Business Requirements and Use Cases, July
2022
[MEF128] MEF 128, LSO API Security Profile, July 2022
[MEF137] MEF 137 LSO Cantata and LSO Sonata Appointment Management API -
Developer Guide, October 2022
[REST] Chapter 5: Representational State Transfer (REST) Fielding, Roy Thomas,
Architectural Styles and the Design of Network-based Software Architectures (Ph.D.).
[RFC2119] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, by
S. Bradner, March 1997
[RFC3986] RFC 3986 Uniform Resource Identifier (URI): Generic Syntax, January
2005
[RFC8174] RFC 8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key
Words, by B. Leiba, May 2017, Copyright (c) 2017 IETF Trust and the persons
identified as the document authors. All rights reserved.
[TMF621] TMF 621, Trouble Ticket API REST Specification R19.0.1, November 2019
[TMF630] TMF 630 TMF630 API Design Guidelines 4.2.0

http://spec.openapis.org/oas/v3.0.3.html
https://www.mef.net/wp-content/uploads/2021/02/MEF-55.1.pdf
http://www.mef.net/resources/technical-specifications/download?id=129&fileid=file1
https://www.mef.net/wp-content/uploads/MEF-80.pdf
https://www.mef.net/wp-content/uploads/MEF-113.pdf
https://www.mef.net/wp-content/uploads/MEF-128.pdf
https://www.mef.net/wp-content/uploads/MEF-137.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3986#section-3
https://tools.ietf.org/html/rfc8174
https://www.tmforum.org/resources/specification/tmf621-trouble-ticket-management-api-rest-specification-r19-0-0/
https://www.tmforum.org/resources/specification/tmf630-rest-api-design-guidelines-4-2-0/

87 / 87

Appendix A Acknowledgments

Mike BENCHECK

Michał ŁĄCZYŃSKI

Jack PUGACZEWSKI

Patrick ROOSEN

Karthik SETHURAMAN

