
 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the
following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

MEF Standard

MEF 128

LSO API Security Profile

July 2022

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the
following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Disclaimer

© MEF Forum 2022. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any recipient

and is believed to be accurate as of its publication date. Such information is subject to change

without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume

responsibility to update or correct any information in this publication. No representation or

warranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or

applicability of any information contained herein and no liability of any kind shall be assumed by

MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the recipient or

user of this document. MEF is not responsible or liable for any modifications to this document

made by any other party.

The receipt or any use of this document or its contents does not in any way create, by implication

or otherwise:

a) any express or implied license or right to or under any patent, copyright, trademark or

trade secret rights held or claimed by any MEF member which are or may be associated

with the ideas, techniques, concepts or expressions contained herein; nor

b) any warranty or representation that any MEF members will announce any product(s)

and/or service(s) related thereto, or if such announcements are made, that such

announced product(s) and/or service(s) embody any or all of the ideas, technologies, or

concepts contained herein; nor

c) any form of relationship between any MEF member and the recipient or user of this

document.

Implementation or use of specific MEF standards, specifications, or recommendations will be

voluntary, and no Member shall be obliged to implement them by virtue of participation in MEF

Forum. MEF is a non-profit international organization to enable the development and worldwide

adoption of agile, assured and orchestrated network services. MEF does not, expressly or

otherwise, endorse or promote any specific products or services.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 1

Table of Contents

1 List of Contributing Members ... 3

2 Abstract .. 4

3 Terminology and Abbreviations .. 5

4 Compliance Levels .. 7

5 Introduction ... 8

6 MEF LSO Security Architecture ... 12

6.1 MEF LSO API Security Architecture Prerequisites .. 12
6.2 Supported Authentication Frameworks ... 14
6.3 Registration, Staging, Authentication and Authorization .. 15
6.4 Hybrid Flow Request with Intent Id .. 17
6.5 Hybrid Grant Flow Parameters .. 18

6.5.1 Example hybrid grant flow request/response ... 21

7 JWT Security Suite Information v1.0 ... 28

7.1 General Guidance for JWT Best Practice .. 28
7.2 JSON Web Key Set (JWKS) Endpoints .. 28
7.3 General outline for creating a JWS.. 28

7.3.1 Step 1: Select the certificate and private key to sign the JWS ... 28
7.3.2 Step 2: Form the JOSE Header .. 29
7.3.3 Step 3: Form the payload to be signed ... 29
7.3.4 Step 4: Sign and encode the payload ... 30
7.3.5 Step 5: Assemble the JWS ... 30

7.4 General Outline for creating a JWE .. 30
7.4.1 Step 1: Select the certificate and private key to sign the JWE ... 31
7.4.2 Step 2: Form the JOSE Header of the JWE ... 31
7.4.3 Step 3: Form the encryption key, initialization vector and AAD .. 32
7.4.4 Step 4: Form the JWE Ciphertext and final JWE .. 33

8 References .. 34

Appendix A Authentication Framework Threat Model (Informative) 36

Appendix B Why Decentralized Public Key Infrastructure? (Informative) 38

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 2

List of Figures

Figure 1 – LSO API Access Security ... 9
Figure 2 – Entity LSO API Security ... 10
Figure 3 – Notifications: Entity LSO API Security .. 11
Figure 4 – MEF LSO APIs Security Architecture .. 15
Figure 5 – HTTP Request for Id Token .. 21
Figure 6 – Request JWS/JWE (expanded) .. 22
Figure 7 – id_token Return ... 23
Figure 8 – id_token return with UserIdentifier ... 23

List of Tables

Table 1 – Terminology and Abbreviations ... 6
Table 2 – Minimum Conformance .. 21
Table 3 – ID Token Claims Details .. 27
Table 4 – Forming the JOSE Header .. 29
Table 5 – Signing the JSON Payload .. 29
Table 6 – Forming the JOSE Header of the JWE ... 32
Table 7 – JWS /JWE issuer property .. 33

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 3

1 List of Contributing Members

The following members of the MEF participated in the development of this document and have

requested to be included in this list.

• Cisco Systems

• Lumen Technologies

• DLT

• Verizon

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 4

2 Abstract

This document defines the security profile, security approaches and security architecture for LSO

API security using OAuth2 and OIDC within either a centralized or federated identity provider

framework.

The intended audience of this document is senior IT security professionals, in particular identity

and security architects and compliance specialists implementing LSO APIs. This document is not

a general reference on API security, but an LSO API-specific standard.

The document first defines the LSO API security architecture and conformance requirements to

that architecture. The standard then defines the following security components:

• JWT Best Practices for LSO API Security

• JWKS Endpoints for cryptographic signatures and their verifications

• Structure and conformance requirements for JWSs and JWEs

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 5

3 Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative definitions to

terms are found in other documents. In these cases, the third column is used to provide the

reference that is controlling, in other MEF or external documents.

Term Definition Reference

Account Information Service

Providers

Account Information Service Providers are

authorized entities to retrieve account data provided

by service providers.

Open Banking [23]

AISP Account Information Service Provider Open Banking [23]

API Application Program Interface MEF 55.1 [21]

Application Program

Interface

A software intermediary that allows two applications

to talk to each other.

MEF 55.1 [21]

Buyer Buyer may be a customer, or a Service Provider who

is buying from a Partner

MEF 55.1 [21]

FAPI Financial-grade API OpenID FAPI [28]

Financial-grade API An industry-led specification of JSON data schemas,

security, and privacy protocols to support use cases

for commercial and investment banking accounts as

well as insurance and credit card accounts.

OpenID FAPI [28]

Intent_id A special claim defined by Open Banking for OIDC

Connect Core

OpenID Connect

Core [25]

JavaScript Object Notation A lightweight data-interchange format. ECMA JSON [2]

JOSE JSON Object Signing and Encryption IANA JOSE [4]

JSON JavaScript Object Notation ECMA JSON [2]

JSON Web Encryption Encrypted content represented using JSON-based

data structures.

IETF RFC 7516 [12]

JSON Web Key Set A set of keys containing the public keys used to

verify any JSON Web Token (JWT) issued by the

authorization server and signed using an approved

signing algorithm such as the recommended RS256

(RSA signature with sha-256 hashing).

IETF RFC 7517 [13]

JSON Web Signature Represents content secured with digital signatures or

Message Authentication Codes (MACs) using JSON-

based data structures.

IETF RFC 7515 [10]

JSON Web Token An open, industry standard method for representing

claims securely between two parties.

IETF RFC 7519 [15]

JWE JSON Web Encryption IETF RFC 7516 [12]

JWS JSON Web Signature IETF RFC 7515 [10]

JWT JSON Web Token IETF RFC 7519 [15]

Legal Entity A company or organization that has legal rights and

responsibilities, including tax filings.

This document

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 6

Term Definition Reference

LSO Lifecycle Service Orchestration MEF 55.1 [21]

OAuth2 OAuth 2.0 focuses on client developer simplicity

while providing specific authorization flows for web

applications. The OAuth2.0 Framework is defined in

RFC 6749

IETF RFC 6749 [8]

OIDC OpenID Connect OpenID Connect

Core [25]

OpenID Connect A simple identity layer on top of the OAuth 2.0

protocol. It allows Clients to verify the identity of the

End-User based on the authentication performed by

an Authorization Server, as well as to obtain basic

profile information about the End-User in an

interoperable and REST-like manner.

OpenID Connect

Core [25]

Relying Party An OAuth 2.0 Client application that requires user

authentication and claims from an OpenID Connect

Provider.

OpenID Connect

Core [25]

Representational State

Transfer

An architectural style for distributed hypermedia

systems

Fielding 2000 [3]

REST Representational State Transfer Fielding 2000 [3]

RP Relying Party OpenID Connect

Core [25]

Software Statement

Assertion

A JSON Web Token (JWT) containing client

metadata about an instance of client software. This is

used for OpenID Dynamic Client Registration.

IETF 7591 [16]

Security Domain A domain that implements a security policy and is

administered by a single authority.

CNSSI 4009 [1]

Seller Seller may be a Service Provider or a Partner who is

providing service to a Buyer

MEF 55.1 [21]

SSA Software Statement Assertion IETF 7591 [16]

Third Party Provider Account Information Service Providers Open Banking [23]

TPP Third Party Provider Open Banking [23]

Trust Domain Security Domain This document

VC Verifiable Credential W3C VCDM [29]

Verifiable Credential A tamper-evident credential that has authorship that

can be cryptographically verified.

W3C VCDM [29]

Table 1 – Terminology and Abbreviations

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 7

4 Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",

and "OPTIONAL" in this document are to be interpreted as described in BCP 14 (IETF, 2017)

when, and only when, they appear in all capitals, as shown here. All key words must be in bold

text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx] for

required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD NOT)

are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words MAY or

OPTIONAL) are labeled as [Ox] for optional.

A paragraph preceded by [CRa]< specifies a conditional mandatory requirement that MUST be

followed if the condition(s) following the “<” have been met. For example, “[CR1]<[D38]”

indicates that Conditional Mandatory Requirement 1 must be followed if Desirable Requirement

38 has been met. A paragraph preceded by [CDb]< specifies a Conditional Desirable Requirement

that SHOULD be followed if the condition(s) following the “<” have been met. A paragraph

preceded by [COc]< specifies a Conditional Optional Requirement that MAY be followed if the

condition(s) following the “<” have been met.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 8

5 Introduction

The current business to business automation standards as expressed through the LSO APIs are

lacking basic cybersecurity standards – cybersecurity “blocking and tackling” – and advanced

threat protection.

One key prerequisite for a Zero Trust Framework is the implementation of cybersecurity “blocking

and tackling” standards such as authentication and authorization as foundational building blocks

to provide security and assurance across enterprise trust boundaries.

This standard sets out to provide such context-specific cybersecurity “blocking and tackling” by

providing specific cybersecurity functional requirements and mechanisms that help to produce

consistently secure LSO API-based communications between entities across Trust Domains. This

standard’s aim is to gain alignment on the detailed LSO API security mechanisms for interface

reference points including Sonata, Interlude, Cantata and Allegro.

For simplicity, this document uses the term entity as a stand-in for Buyer, Seller, enterprise

customer, and Third-Party Provider (TPP). Where required, for disambiguation the document uses

the terms Buyer, Seller, enterprise customer and TPP.

This document provides a baseline for authentication (verifying the identity of a service requester)

and authorization (verifying the allowed scope of access to Buyer/Seller resources of a service

requester) across Trust Domains and a list of supported Identity frameworks that integrate with

access policies.

The scope of this document is to address the following security areas for LSO APIs:

• Authentication Frameworks

• Identity Authentication

• Access Claims Requirements

• Authorization Framework

• Access Claims Processing

This standard covers OpenAPI/REST APIs. RestConf [17] and NetConf [7] APIs are out of scope.

Furthermore, this standard does not address the lifecycle (provisioning/removal/updates) of

identities and claims (access control policies).

This document assumes that entities are in different Trust Domains and, therefore, must apply the

LSO API Security Framework to all services crossing Trust Domains. A Trust Domain in the

context of this document is equivalent to a Security Domain as defined in CNSSI 4009 [1].

A Trust Domain is a security domain that implements a security Policy and is administered by a

single authority. An example of a Trust Domain is an LSO API endpoint host.

There are three levels of LSO API security across Trust Domains:

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 9

1. Transport layer security through HTTPS as described in OAuth2 using OAuth2's

OpenAPI definitions – establishes a secure communication channel between entities.

2. LSO API access security through the endpoint providing LSO API authentication and

authorization – answering the question: Is this requester allowed to access a specific

environment?

3. Entity LSO API security through function-specific scopes and associated authentication

and authorization policies – Answering the question: Is this requester allowed to access

specific functions/resources in a specific environment and do specific things with that

function/resource?

Transport security is considered the 1st level of security and is aligned with the minimum

requirements of the standards referenced in this document – OAuth2, OpenID Connect (OIDC),

UK Open Banking and W3C Verifiable Credentials – and not further discussed in this document.

This document provides MEF-specific standards for the 2nd and 3rd level of security.

To provide further context for the subsequent discussions, the document provides concrete

examples of what is meant by the 2nd and 3rd level of security as defined in this section in Figures

1 and 2. Since the 1st level is out of scope for this document, this document does not provide an

example.

Figure 1 outlines an example of LSO API access security, the 2nd level of security.

Figure 1 – LSO API Access Security

The dataflow in Figure 1 describes the steps required for the Buyer application to receive an access

token.

Figure 2 outlines an example of Buyer–Seller LSO API security through function-specific scopes

and associated authentication and authorization policies, 3rd level of security.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 10

Figure 2 – Entity LSO API Security

The dataflow in Figure 2 depicts the steps required for a Buyer’s application to acquire and present

a token to the Seller’s LSO API endpoint.

The document’s scope is limited to the definition of the schema of the JSON Web Token (JWT)

used to perform authentication of a Buyer and the authorization that said Buyer has to the LSO

API endpoint the Buyer is interacting with.

Payload security is out of scope. It should be implemented to ensure both parties use verifiable

means to protect the integrity of data being exchanged.

Figure 2 depicts the data flows between Buyer and Seller to obtain an Access (Bearer) token, and

how the Bearer token is used to access protected resources.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 11

Figure 3 – Notifications: Entity LSO API Security

Figure 3 shows the authorization path when the endpoint in question is Notifications. The only

difference in this case is related to the role of each party. For Notifications, the party that is sending

data is the Seller, which therefore needs to be authenticated and authorized by the receiving party,

the Buyer. This reversal of roles means that the Buyer will need to issue a credential to the Seller

and grant that credential claims to connect to the Notification endpoint. Only a Buyer that does

utilize the Notifications endpoint of LSO APIs will need to provision the Seller with credentials

and access rights (claims).

The document is structured in the following way:

1. MEF LSO Security Architecture in Section 6 with

a. A discussion on MEF LSO API Security Architecture Prerequisites

b. The delineation of Supported Authentication Frameworks

c. An outline of how to enable Authentication and Authorization between entities

d. A detailed discussion of the Hybrid Grant Flow Request with Intent Id

e. A discussion of the Hybrid Grant Flow Parameters

2. JWT Security Suite Information v1.0 in section 7 with

a. General Guidance for JWT Best Practice

b. A brief discussion of JSON Web Key Sets (JWKS) Endpoints

c. General outline for creating a JSON Web Signature Token (JWS)

d. General Outline for creating a JSON Web Encryption Token (JWE), as an alternative

to a JWS

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 12

6 MEF LSO Security Architecture

This section details the MEF LSO Security Architecture. This document discusses the following

aspects in sequence:

1. Prerequisites for utilizing the MEF LSO security

2. Supported authentication frameworks

3. MEF LSO API security architecture workflows, data models and JSON security

information

4. MEF LSO API security model examples & exceptions

6.1 MEF LSO API Security Architecture Prerequisites

Uniqueness and security of identifiers utilized in LSO APIs is particularly important to

unambiguously identify Entities, like Service Providers (SPs) and TPPs as their delegates

interacting with and through LSO APIs and to keep those interactions secure. Furthermore, and to

facilitate automation and real time interactions within and through LSO APIs, discovery of

identifiers and an ability to resolve them to the underlying public keys that secure them without

having to rely on a trusted 3rd party is also critical.

This document assumes several capabilities must be in place before the MEF LSO API endpoint

can be fully operational. We express them in this minimal set of prerequisites. Requirements [R1]

and [R2] apply to entities that provide LSO API endpoints to other entities.

[R1] To open an API workflow, the Entity or TPP MUST at the

very least have an agreed mechanism to onboard and validate

the trustworthiness of new IdPs from which they are willing

to accept an identifier. This mechanism could be procedural

but could also include additional technical controls. The

exact implementation is left to the implementer.

[R2] Any Entities or TTPs wishing to enable OpenAPI access

using the MEF LSO API security endpoints MUST also have

the means to validate a requesting’s identity at the time of the

request and to ensure that the requesting entity is been

properly granted access to the requested resource.

Conversely:

[R3] The entity requesting access to an LSO API MUST have a

unique identifier.

[R4] Any unique identifier MUST be associated with a public key.

These requirements allow an entity to prove that it controls, and can, thus, authenticate the unique

identifier utilized in the LSO API Security context of this document without a verifying third party.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 13

[R5] Any unique identifier MUST be resolvable to its associated

public key used for cryptographic authentication of the

unique identifier.

Requirement [R5] allows an entity to access the public key used in the unique identifier

authentication independently of the entity requesting access or any other third party.

Requirement [R5] supports the self-issuance of unique identifiers that allow for cryptographically

verifiable non-repudiation. Note that the usage of commonly used public key infrastructure (PKI)

based on X.509 digital certificates is permissible. Threat models to traditional PKI are outlined in

Appendix A.

After having discussed the minimal set of requirements on identifiers utilized in LSO APIs, it is

important to discuss how these relate to identity and claims about facts relevant to entities, also

called credentials.

[R6] A unique identifier utilized with LSO APIs MUST be linked

to a Legal Entity of the service-requesting entity or its TPP

through a cryptographically signed, cryptographically

verifiable, and cryptographically revocable credential based

on the public key associated with the unique identifier of the

credential issuer.

In the context of this document, a Legal Entity is an individual, organization or company that has

legal rights and obligations. In terms of LSO API interactions, a Legal Entity can be a Buyer, a

Seller, or both, depending on which LSO API endpoints are consumed.

This document makes no assumptions as to how a Legal Entity establishing credential is created,

which identity credential issuers are mutually acceptable between Buyer and Seller and how these

identity credentials are exchanged to establish mutual trust across enterprise trust boundaries to

perform authentication and authorization operations for LSO APIs between Buyer and Seller.

Note that credentials utilized with LSO APIs may be self-issued. The acceptance of self-issued

credentials is up to the Buyer/Seller that need to rely on the claim(s) within a self-issued credential.

[R7] The unique identifier of the Legal Entity of the TPP/Entity

MUST be the subject of the credential.

[R8] The unique identifier of the issuer of the Legal Entity

credential utilized in LSO APIs MUST have a credential

linking the unique identifier of the issuer to an Entity

accepted by the Entities.

[R9] A credential utilized with an LSO API MUST itself have a

unique and resolvable identifier.

Note that the unique and resolvable identifier of a credential does not have to be associated with

any cryptographic keys.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 14

[R10] If present, the status of a credential utilized within an LSO

API MUST be discoverable by a party verifying the

credential, the credential verifier.

In the context of this document, a credential status signals if a credential has been revoked or not,

and a credential verifier is defined per the W3C Verifiable Credential Standard [29].

[D1] A credential utilized with an LSO API SHOULD be discoverable by any

entity.

[R11] The presentation of a credential utilized with a LSO API

MUST be cryptographically signed by the presenter of the

credential, also known as the credential holder.

See the W3C Verifiable Credential Standard for a definition of credential holder.

[R12] The holder of a credential MUST have a unique identifier

that has been established within the LSO API security

context the holder operates in.

This document makes no assumptions about existing business relationships between entities. It is

in the purview of the relying party whether these prerequisites are sufficient or whether additional

requirements need to be fulfilled. An (OIDC) Relying Party is an OAuth 2.0 Client application

that requires authentication and claims from an OpenID Connect Provider.

Appendix A includes details on the scope of the threat model associated with these requirements

and additional good practice steps that may be undertaken by each party to address these.

6.2 Supported Authentication Frameworks

In this standard, OAuth 2.0 is the primary framework for API Security for MEF LSO APIs,

augmented by either centralized or federated Identity Provider frameworks utilizing JSON Web

Tokens (JWTs) [15] for authentication, and resource authorization claims following the OpenID

Connect standard framework (OIDC) [25].

OAuth 2.0 itself is a framework which can be deployed in many ways. Therefore, and to securely

use the OAuth 2.0 framework, a security profile must exist by which entities or their Third Party

Service Providers (TPPs) are certified to have correctly configured their clients and servers. TPPs

act as an authentication service provider when the entity has outsourced its authentication services

to a vendor.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 15

6.3 Registration, Staging, Authentication and Authorization

Figure 4 – MEF LSO APIs Security Architecture

For context setting and completeness this document reiterates the typical OAuth2 authentication

and authorization process for entity resources such as LSO APIs incorporating OpenID Connect

Request Objects as JWTs containing relevant Identity Provider Information as depicted in Figure

4.

1. Entity registers with another entity to receive client identity credentials

2. Entity register Intent with the Staging API endpoint of another entity

Step 1: Entity Registers an Endpoint

A TPP/Entity submits a SSA through an OAuth2 client registration request to a known API

endpoint of an Entity that controls client registration for an LSO API as a resource to be accessed

by the TPP/Entity. A Software Statement Assertion (SSA) [16] is a JWT containing client metadata

about an instance of TPP/Entity client software. This is used for OpenID Connect Dynamic Client

Registration. The SSA is used by an OAuth client to provide both informational and OAuth

protocol-related assertions that aid OAuth infrastructure to both recognize client software, e.g.,

signed release hash and determine a client's expected requirements when accessing an OAuth-

protected resource, e.g., required cryptographic algorithms to be used.

If the SSA meets the OAuth2 requirements of the target entity, either Buyer or Seller, the target

entity issues client credentials.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 16

Step 2: Entity is provisioned with Access

When a TPP/entity wants to access an LSO API either once or repeatedly, the TPP/entity submits

an intent to perform a specific LSO API action and why the client wants to perform such an action

to a known API endpoint of an entity. If the request is authenticated, the client will receive a ticket

back which is necessary to be presented in the next step. A ticket could for example be simply an

Id such as an Intent Id. This step is recommended to provide very specific authorizations which

might be required for regulatory or contractual reasons. A ticket functions just like a queue number.

Details of a ticket object and its definition are given in the Open Banking standard [24] and will

not be repeated here.

Step 3: Entity is granted an Authorization Token

To receive an authorization token for the LSO API (not the specific function), the TPP/entity

submits the ticket from step 2 in an authorization request to a known API endpoint of an entity. If

the TPP/entity is both authenticated and the ticket validated, the entity providing the LSO API will

return an authorization token. This authorization token is used to obtain the fine-grained

authorization to the desired function.

Step 4: Entity requests access to specific LSO API endpoints and functions

Once an authorization token to access the domain of the LSO API has been obtained by the

TPP/entity, the TPP/entity submits a token request to a known API endpoint of an entity containing

the client credential and the authorization token received in Step 3. If there is an existing

authorization policy for the LSO API associated with the client credential at the token endpoint,

an authorization token – that the TPP/entity can access a very specific LSO API functional

endpoint and may or may not include specific fine-grained authorizations and cryptographic

material – and a resource token – that the TPP/entity can access a specific resource, typically a

specific server or specific serverless function and may or may not include specific resource

metadata and cryptographic material – are issued to the TPP/entity. Note that if the original intent

was to access the LSO API repeatedly the authorization and resource tokens are time bound and

need to be refreshed. Otherwise, they are typically single use only.

Step 5: Entity interacts with an LSO API endpoint

The TPP/entity can now finally access the detailed LSO API function on the resource server

through a known API endpoint of an entity, by calling a single function LSO API endpoint on the

resource server in a request containing the authorization and resource tokens and the LSO API

endpoint payload. If the resource server validates the authorization and the resource tokens, the

LSO API request is executed, and the function specific response is generated and sent to the

requesting entity.

There are two possible operating models that this document needs to accommodate based on

Figure 4:

• Model 1: An entity, as Buyer or Seller, is operating its own authentication and resource

infrastructure. In this model the TPP is the entity.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 17

• Model 2: An entity, as Buyer or Seller, outsourced/delegated either its authentication or

resource infrastructure or both to a 3rd party, a TPP. In this model the TPP is different

from the entity owning the resource.

Note that as a prerequisite to Step 1: Register Endpoint, the Entity receiving the registration

request needs to have a notion of the TPP/Entity and its identity submitting the request.

Furthermore, since Entity client requirements are Entity specific, these requirements are out of

scope of this document as well. This means that for Step 1, this document simply refers to the

OpenID Connect Dynamic Client Registration standard, and in particular Section 3.1: Client

Registration Request [25].

[R13] Entities MUST follow the OpenID Connect Discovery

standard [27] to publish their OAuth2 client requirements.

Model 2 is discussed because it is more general, and, where required, this document will highlight

any adjustments to Model 2 to accommodate Model 1.

See the OpenID Connect Core standard, section 6 [25] for necessary OIDC flow details not

discussed in this section.

The OpenID Connect Request object in Figure 3 uses the same claims’ object for specifying claim

names, priorities, and values. However, if the request object is used, the claims object becomes a

member in an assertion that can be signed and encrypted, allowing the entity to authenticate the

request directly (Model 1) or from its TPP (Model 2) and ensure it has not been tampered with.

The OpenID Connect request object can either be passed as a query string parameter, a JWS or a

JWE or can be referenced at a protected endpoint.

In addition to specifying a ticket, the TPP (Entity) can optionally require a minimum strength of

authentication context or request to know how long ago the requesting entity was authenticated.

Multiple tickets could be passed, if necessary. Note, this feature is fully specified in the OpenID

Connect standard, therefore, there is no need for any proprietary implementations.

Full accountability is available as required by all participants. Not only can the Entity prove that

they received the original request from the TPP (Model 2) or the other Entity (Model 1), but the

TPP (Model 2) or Entity (Model 1) can prove that the access token that comes back was the token

that was intended to be affiliated to this specific request.

6.4 Hybrid Flow Request with Intent Id

Within the OpenID Connect Framework there are three types of authentication flows:

1. Authentication Code Flow

2. Implicit Flow

3. Hybrid Flow

These flows are combined with OpenID Connect claims to integrate authorization within

authentication flows.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 18

The Hybrid Flow incorporating an Intent is the recommended approach because it not only

addresses the attacks outlined in IETF RFC 6819 [9] but also Identity Provider Mix Up attacks. A

so called ‘cut and pasted code attack’ where the attacker exchanges the ‘code’ in the authorization

response with the victim’s ‘code’ obtained by the attacker through another attack. The attacker

uses the ‘code’ in a session to feed to the client to obtain an access token with the victim’s

privileges. Furthermore, registering an intent simplifies audit reporting when the API accesses

sensitive data or triggers sensitive operations. This flow has also been adopted by the Open

Banking consortium. Since authorization claims are included in the flow after authentication, it is

called Hybrid Grant Flow.

This section describes parameters that should be used with a hybrid grant flow request such that

an Intent Id can be passed from the Buyer TPP/Entity to an Entity acting as Seller.

Prior to this step:

• The TPP/Entity (Buyer) would have been granted a credential by another entity (Seller)

[R3]

• [R13]The Seller MUST have applied an authorization policy to the Buyer credential

• [R14] The Buyer MUST have registered a client application with the Seller (Step 1 from

section 6.3)

• [R15] The TPP/Entity MUST have already registered an intent with a Seller (Step 2 from

section 6.3)

• [R16] The Seller MUST have responded with an Intent Id to the Buyer (Step 2 from

section 6.3).

6.5 Hybrid Grant Flow Parameters

This subsection covers the minimum requirements for the exchange of information in the hybrid

grant flow and the issuance of an Id Token by the Seller to the Buyer.

Minimum Conformance Requirements

This section describes the minimal set of authorization request parameters that a TPP/Seller and

Buyer must support. The technical definitive reference is specified in OpenID Connect Core

Errata 1 Section 6.1 (Request Object) [25]. The requirements are listed in Table 2.

[R14] All standards and guidance MUST be followed as per the

OpenID Connect (OIDC) specification.

[R15] A Seller MUST support the issuance of OIDC ID Tokens as

defined in the OIDC specification.

[O1] A Buyer MAY request that an Id token is issued.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 19

Parameter MEF LSO Notes

response_type Required OAuth2 specification requires that this parameter is provided in an

OAuth2 authentication workflow. The value is set to ‘code id_token’,

‘code id_token token’ or ‘code’.

[R16] TPPs/Sellers MUST provide this parameter and set its value to

one of three (‘code id_token’, ‘code id_token token’ or ‘code’)

depending on what the Seller supports as described in its well-

known configuration endpoint.

See definition of the well-known configuration endpoint in the OpenID

Connect Discovery 1.0 specification [27].

[R17] The values for these configuration parameters MUST match

those in the OIDC Request Object if present.

Note: Risks have been identified with the “code” flow that can be

mitigated with the hybrid grant flow. The MEF LSO API Profile

allows entities to indicate what grant types are supported using the

standard well-known configuration endpoint.

client_id Required [R18] TPPs/Buyers MUST provide this value and set it to the client id

issued to them by the Seller to which the authorization code

grant request is being made.

[D2] The client_id SHOULD be self-issued by the TPP,

if it has been linked to either directly or indirectly

through a verifiable credential as per the W3C

Verifiable Credential standard

redirect_uri Required [R19] TPPs/Sellers MUST provide the URI to which they want the

resource owner's user agent to be redirected to after

authorization.

[R20] This URI MUST be a valid, absolute URL or resolvable URI

that was registered during Client Registration with the

TPP/Seller

scope Required [R21] TPPs/Buyers MUST specify the scope that is being requested.

[R22] At a minimum, the scope parameter MUST start with openid

[R23] The scopes MUST be a subset of the scopes that were registered

during client registration with the Seller.

[R24] Multiple scopes MUST be separated by a space per [25], section

5.4

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 20

state Recommended [O2] TPPs/Buyers MAY provide a state parameter.

The state parameter may be of any format and is opaque to the Seller.

[CR1]<[O1] If the state parameter is provided, the Seller MUST play-

back the value in the redirect to the TPP/Buyer.

[D3] Buyers SHOULD include the s_hash – the hash of

the state as the state parameter.

request Required [R25] The TPP/Buyer MUST provide a value for this parameter.

[R26] The parameter MUST contain a JWS or JWE that is signed by

the TPP/Buyer.

[R27] The JWS/JWE payload MUST consist of a JSON object

containing an OIDC request object as per [25], section 6.1.

[R28] The OIDC request object MUST contain a claims section that

includes an Id Token having as a minimum the following

element:

• meflso_intent_id: that identifies the Intent Id for which

this authorization is requested

[R29] The Intent Id MUST be the identifier for an intent returned by

the Seller to Buyer that is initiating the authorization request.

[O3] acr_values: TPPs/Buyer MAY provide a space-separated

string that specifies the acr values that the Authorization

Server is being requested to use for processing this

Authentication Request, with the values appearing in order of

preference.

[R30] The acr_values MUST be one of:

• urn:mef:lso:security:oidc:acr:sca: To indicate that

secure client authentication must be carried out

• urn:mef:lso:security:oidc:acr:ca: To request that the

client is authenticated without using a SCA, if permitted

[O4] The OIDC request object MAY contain claims to be retrieved

via the UserInfo endpoint only if the endpoint is made

available and listed on the well-known configuration endpoint

on the authorization server.

[O5] The OIDC request object MAY contain additional claims to be

requested should the Sellers’ authorization server support

them; these claims are listed on the OIDC well-known

configuration endpoint.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 21

Table 2 – Minimum Conformance

6.5.1 Example hybrid grant flow request/response

The HTTP request in Figure 5 depicts the fields and sample possible values defined in Table 2.

The structure of id_token returned upon a successful request is shown in Figure 6. Figure 7 shows

the structure of the id_token when the subject is a user. In this flow, the Buyer present an Intent Id

and the Seller returns an Id token after validation of the Intent Id and scope.

6.5.1.1 HTTP Request JWS/JWE

GET /authorize?

response_type=code%20id_token

&client_id=s6BhdRkqt3

&state=af0ifjsldkj&

&scope=openid

&nonce=n-0S6_WzA2Mj

&redirect_uri=https://api.mytpp.com/cb

&request=CJleHAiOjE0OTUxOTk1ODd.....JjVqsDuushgpwp0E.5leGFtcGxlIiwianRpIjoiM....J

leHAiOjE0.olnx_YKAm2J1rbpOP8wGhi1BDNHJjVqsDuushgpwp0E

Figure 5 – HTTP Request for Id Token

Note that the example shown in Figure 5 is without Base64 encoding. Also note that "essential" is

an optional property. It indicates whether the Claim being requested is an Essential Claim. If the

value is true, this indicates that the Claim is an Essential Claim. For instance, the Claim request:

"auth_time": {"essential": true}

can be used to specify that it is Essential to return an auth_time Claim Value. If the value is false,

it indicates that it is a Voluntary Claim. The default is false.

By requesting Claims as Essential Claims, the RP indicates to the Seller that releasing these Claims

will ensure a smooth authorization for the specific task requested by the Buyer.

Note that even if the Claims are not available because the Seller did not authorize their release or

they are not present, the authorization server must not generate an error when Claims are not

returned, whether they are Essential or Voluntary, unless otherwise specified in the description of

the specific claim. See the OIDC Core Specification.

The request object in Figure 5 is expanded in Figure 6.

{

 "alg": "RS256",

 "kid": "GxlIiwianVqsDuushgjE0OTUxOTk"

}

.

{

 "aud": "https://api.acme.com",

 "iss": "s6BhdRkqt3",

http://openid.net/specs/openid-connect-core-1_0.html#Claims

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 22

 "response_type": "code id_token",

 "client_id": "s6BhdRkqt3",

 "redirect_uri": "https://api.mytpp.com/cb",

 "state": "af0ifjsldkj",

 "nonce": "n-0S6_WzA2Mj",

 "max_age": 86400,

 "claims":

 {

 "userinfo":

 {

 "meflso_intent_id": {"value": "urn:acme-intent-58923", "essential": true}

 },

 "id_token":

 {

 "meflso_intent_id": {"value": "urn-acme-intent-58923", "essential": true},

 "acr": {"essential": true,

 "values": ["urn:mef:lso:security:oidc:acr:sca",

 "urn:mef:lso:security:oidc:acr:ca"]}}

 }

 }

}

.

<<signature>>

Figure 6 – Request JWS/JWE (expanded)

6.5.1.2 HTTP Response: id_token returned

Figure 6 shows the content of a JWS with the id_token being returned to the Buyer after

authorization is successful, based on the request shown in Figure 4.

Note that Sub is being populated with an EphemeralId of the IntentId.

{

 "alg": "RS256",

 "kid": "12345",

 "typ": "JWT"

}

.

{

 "iss": "https://api.acme.com",

 "iat": 1234569795,

 "sub": "urn-acme-quote-58923",

 "acr": "urn:mef:lso:security:oidc:acr:ca",

 "meflso_intent_id": "urn-acme-intent-58923",

 "aud": "s6BhdRkqt3",

 "nonce": "n-0S6_WzA2Mj",

 "exp": 1311281970,

 "s_hash": "76sa5dd",

 "c_hash": "asd097d"

 }

.

{

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 23

<<Signature>>

}

Figure 7 – id_token Return

6.5.1.3 Id_token returned

Figure 7 shows Identity Claims and IntentId with sub being populated with an UserIdentifier. This

reply is just an example of additional data that may be returned to the Buyer in an Id token.

{

 "alg": "RS256",

 "kid": "12345",

 "typ": "JWT"

}

.

{

 "iss": "https://api.acme.com",

 "iat": 1234569795,

 "sub": "ralph.bragg@raidiam.com",

 "acr": "urn:mef:lso:security:oidc:acr:sca",

 "address": "2 Thomas More Square",

 "phone": "+447890130559",

 "meflso_intent_id": "urn-acme-quote-58923",

 "aud": "s6BhdRkqt3",

 "nonce": "n-0S6_WzA2Mj",

 "exp": 1311281970,

 "s_hash": "76sa5dd",

 "c_hash": "asd097d"

 }

.

{

<<Signature>>

}

Figure 8 – id_token return with UserIdentifier

Implementers should note that ID Token Claims details should follow the JWT Best Current

Practices [20] section 3.1.

The different token data properties are listed in the Table 3. The last column describes what the

value of the field means.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 24

Field Definition Notes Value(s)

iss Issuer of the

token

Token issuer is specific to the business.

[R31] The iss MUST be a JSON string that

represents the issuer identifier of the

authorization server as defined in RFC

7519 [15].

When OAuth 2.0 is used, the value is the

redirection URI. When OpenID Connect is used,

the value is the issuer value of the authorization

server.

A resolvable URI

such as a URL

sub Token subject

identifier

[R32] Sub MUST be a unique and non-repeating

identifier for the subject, i.e., the Buyer.

[R33] The sub identifier MUST be the same when

created by the Authorization and Token

endpoints during the Hybrid flow.

Non-Identity

Services Providers

will use the

Intent/Consent ID

for this field.

Identity Services

Providers will

choose a value at the

discretion of the

Entity.

meflso_intent_id Intent ID of the

originating

request

[R34] meflso_intent_id MUST be a unique and

non-repeating identifier containing the

intent_id.

[O6] This field MAY duplicate the value in

“sub” for many providers.

Use the

Intent/Consent ID

for this field.

aud Audience that

the ID token is

intended for

[R35] OpenID Connect protocol mandates aud

MUST include the client ID of the

TPP/Entity.

See also the FAPI Read Write / OpenID Standard

[28].

Client ID of the

TPP/Entity

exp Token

expiration

date/time

[R36] Exp MUST be included in the Claim ID

token

The validity length is set at the discretion of the

Entity such that it does not impact the

functionality of the APIs. For example, an expiry

time of 1 second is insufficient for all Resource

Requests.

Expressed as an

epoch, i.e., number

of seconds from

1970-01-01T0:0:0Z

as measured in

UTC. RFC 7519

[15]

iat Token issuance

date/time

[R37] The iat property MUST be included in the

Claim ID token

Expressed as an

epoch, i.e., number

of seconds from

1970-01-01T0:0:0Z

as measured in

UTC.

https://tools.ietf.org/html/rfc7519
https://tools.ietf.org/html/rfc7519

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 25

auth_time Date/time when

End User was

authorised

[O7] The max_age property MAY be requested

in the Claim ID Token.

[CR2]< [O2] If the max_age request is made or

max_age is included as an

essential claim, auth_time MUST

be supported by the Entity.

Expressed as an

epoch, i.e., number

of seconds from

1970-01-01T0:0:0Z

as measured in

UTC.

nonce Used to help

mitigate against

replay attacks

[R38] The nonce property MUST be in the Claim

ID Token

The nonce value is passed in as a Request

parameter.

[R39] The nonce MUST be replayed in the ID

token when the token is utilized in a

subsequent access request.

acr Authentication

Context Class

Reference

[R40] The acr property MUST be included in the

Claim ID Token

The acr is an identifier that qualifies what

conditions were satisfied when the authentication

was performed.

[D4] The acr SHOULD correspond

to one of the values requested

by the acr_values field on the

request. However, even if not

present on the request, the

Entity should populate the acr

with a value that attests that

the Entity performed or NOT

performed an appropriate level

of authentication such that the

Entity believes it has met the

requirement for “Strong

Customer Authentication”

(SCA).

Entities that do not wish to provide this as a claim

should remove it from the well-known

configuration endpoint.

As per OIDC Core, marking a claim as “essential”

and an Entity cannot fulfil it, then an error should

not be generated.

The values to be

provided are

urn:mef:lso:securit

y:oidc:acr:ca or

urn:mef:lso:securit

y:oidc:acr:sca.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 26

amr Authentication

Methods

References

The amr property specifies the methods that are

used in the authentication. For example, this field

might contain indicators that a password was

supplied.

Note that the industry direction is to consolidate

on Vectors of Trust: RFC 8485 [19]. Hence, this

field may be replaced shortly. Also note that amr

does not give the flexibility to address all the

actual particulars of both the authentication and

the identity that is utilized.

azp Authorized

party

The azp property is the authorized party to which

the ID Token was issued.

[O8] The azp property MAY be present in the

Claim ID Token.

[CR3]<[O3] If the azp property is present, it

MUST contain the OAuth 2.0 Client

ID of this party.

This Claim is only needed when the ID Token has

a single audience value, and that audience is

different than the authorized party. It may be

included even when the authorized party is the

same as the sole audience.

A resolvable URI

such as a URL

s_hash State Hash

Value [D5] The s_hash property

SHOULD be present in the

Claim ID Token

The state hash, s_hash, in the ID Token is to protect

the state value.

Its value is the

base64url encoding

of the left-most half

of the hash of the

octets of the ASCII

representation of the

state value, where

the hash algorithm

used is the hash

algorithm used in

the algHeader

Parameter of the ID

Token's JOSE

Header. For

instance, if the alg is

HS512, hash the

code value with

SHA-512, then take

the left-most 256

bits and base64url

encode them. The

s_hash value is a

case sensitive string.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 27

at_hash Access Token

Hash Value

[O9] The Claim ID Token MAY be issued from

the Authorization Endpoint with an

access_token value.

[CR4]<[O4] The at_hash property MUST be

included in the Claim ID Token

Its value is the

base64url encoding

of the left-most half

of the hash of the

octets of the ASCII

representation of the

access_token value,

where the hash

algorithm used is the

hash algorithm used

in the alg Header

Parameter of the ID

Token's JOSE

Header. For

instance, if the alg is

RS256, hash the

access_token value

with SHA-256, then

take the left-most

128 bits and

base64url encode

them. The at_hash

value is a case

sensitive string.

c_hash Code hash

value.

[O10] The Claim ID Token MAY be issued from

the Authorization Endpoint with a code.

[CR5]<[O5] The c_hash property MUST be

included in the Claim ID Token

Its value is the

base64url encoding

of the left-most half

of the hash of the

octets of the ASCII

representation of the

code value, where

the hash algorithm

used is the hash

algorithm used in

the alg Header

Parameter of the ID

Token's JOSE

Header.

Table 3 – ID Token Claims Details

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 28

7 JWT Security Suite Information v1.0

This document utilizes, and where required concretizes for the usage with this standard, the JOSE

standard v1.0 [10]. This section only covers requirements for JSON Web Tokens. LSO API

payloads are not in scope.

[R41] All JOSE standard v1.0 requirements MUST be

implemented unless otherwise explicitly indicated in this

document.

7.1 General Guidance for JWT Best Practice

See RFC 8725 [20] for the recommended JWT approach.

7.2 JSON Web Key Set (JWKS) Endpoints

Upon issuance of a certificate from a JWKS [13] hosting service, a JWK Set is created or updated

for a given TPP/Entity.

[D6] All participants SHOULD include the "kid" and "jku" properties of the key

used to sign the payloads in the JWKS issuance request.

[D7] The jku property SHOULD be considered a hint only and relying parties

should derive and then validate wherever possible the appropriate JWKS

endpoint for the message signer.

See [13], section 4.

Note that as certificates are added and removed the JWKS endpoint is updated automatically.

7.3 General outline for creating a JWS

There are 5 steps that must be followed to create a JWS. These steps are detailed in sections 7.3.1

to 7.3.5.

7.3.1 Step 1: Select the certificate and private key to sign the JWS

[R42] As the JWS is used for non-repudiation, it MUST be signed

using one of JWS issuer's private keys.

[R43] The private key MUST have been used by the issuer to get a

signing certificate issued from an identity provider.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 29

[R44] The signing certificate MUST be verifiably valid at the time

of creating the JWS.

7.3.2 Step 2: Form the JOSE Header

[R45] The JWS JOSE header is a JSON object which MUST

consist of minimally two fields, also called the claims, as

specified in Table 4:

Claim Description

alg The algorithm to use for signing the JWS.

[R46] The alg property MUST be taken from the list of required or recommended JOSE

algorithms found in IANA JOSE [4], registry JSON Web Signature and Encryption

Algorithms.

In addition, this document recommends the following algorithms:

[D8] ED25519, also as a JWK, with SHA3-256 as the hashing algorithm

SHOULD also be used as an algorithm for JWS signing

kid The “kid” (key ID) Header Parameter is a hint indicating which key was used to secure the

JWS.

[R47] The kid property MUST match the certificate id of the certificate selected in step 1.

[D9] The receiver SHOULD use this value to identify the certificate to use for

verifying the JWS.

Table 4 – Forming the JOSE Header

7.3.3 Step 3: Form the payload to be signed

The JSON payload to be signed must have the following claims:

Claim Description

iss The issuer of the JWS.

[R48] The iss property MUST match the dn of the certificate selected in step 1.

Table 5 – Signing the JSON Payload

The payload to be signed is computed as:

payload = base64Encode (JOSEHeader) + “.” + base64Encode(json)

Where:

• JOSEHeader: is the header created in Step 2 and

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 30

• json: is the message for the original data to be sent

7.3.4 Step 4: Sign and encode the payload

The signed payload is computed as follows:

signedAndEncodedPayload = base64Encode (encrypt(privateKey, payload))

Where:

• privateKey: is the private key selected in step 1

• payload: is the payload computed in Step 3

• encrypt: Is an encryption function that implements the `alg` identified in Step 2.

7.3.5 Step 5: Assemble the JWS

The JWS is computed as follows:

JWS = payload + “.” + signedAndEncodedPayloadWhere:

• payload: is the payload computed in Step 3

• signedAndEncodedPayload: is the signed element computed in Step 5.

7.4 General Outline for creating a JWE

The implementation guide is based on RFC 7516 [12].

JSON Web Encryption (JWE) represents encrypted content using JSON data structures and

base64url encoding. These JSON data structures may contain whitespace and/or line breaks before

or after any JSON values or structural characters, in accordance with Section 2 of RFC 7516 [12].

A JWE represents these logical values:

• JOSE Header

• JWE Encrypted Key

• JWE Initialization Vector

• JWE AAD (Additional Authenticated Data)

• JWE Ciphertext

• JWE Authentication Tag

For a JWE, the JOSE Header members are the union of the members of these values:

• JWE Protected Header

• JWE Shared Unprotected Header

• JWE Per-Recipient Unprotected Header

JWE utilizes authenticated encryption to ensure the confidentiality and integrity of the plaintext

and the integrity of the JWE Protected Header and the JWE AAD.

This document recommends the following for the JWE Compact Serialization as a representation:

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 31

[D10] JWE Shared Unprotected Header or JWE Per-Recipient Unprotected Header

SHOULD not be used.

In this case, the JOSE Header and the JWE Protected Header are the same.

In this serialization, the JWE is represented as the following concatenation:

BASE64URL(UTF8(JWE Protected Header)) || '.' ||

BASE64URL(JWE Encrypted Key) || '.' ||

BASE64URL(JWE Initialization Vector) || '.' ||

BASE64URL(JWE Ciphertext) || '.' ||

BASE64URL(JWE Authentication Tag)

7.4.1 Step 1: Select the certificate and private key to sign the JWE

[R49] As the JWS is used for non-repudiation, it MUST be signed

using one of JWS issuer’s private keys.

[R50] The issuer MUST have used the private key to get a signing

certificate issued from an identity provider.

[R51] The signing certificate MUST be verifiably valid at the time

of creating the JWE.

7.4.2 Step 2: Form the JOSE Header of the JWE

[R52] The JWE JOSE header is a JSON object which MUST

consist of minimally four fields, also called the claims, as

specified in Table 6:

Claim Description

alg The algorithm to use for signing the JWS.

[R53] The alg property MUST be taken from the list of valid JOSE algorithms in

RFC 7518 [14], section 3.1

[R54] The NULL cipher MUST NOT be used as an alg value in JWTs.

In addition, this document recommends the following algorithms:

[D11] ED25519, also as a JWK, with sha3-256 as the hashing

algorithm SHOULD be used.

kid The "kid" (key ID) Header Parameter is a hint indicating which key was used to

secure the JWS.

[R55] The kid property MUST match the certificate id of the certificate selected

in step 1.

[D12] The receiver SHOULD use this value to identify the certificate

to use for verifying the JWS.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 32

enc The “enc” (encryption algorithm) Header Parameter identifies the content

encryption algorithm used to perform authenticated encryption on the plaintext to

produce the ciphertext and the Authentication Tag.

[R56] The selected encryption algorithm MUST be an AEAD algorithm with a

specified key length.

The encrypted content is not usable if the “enc” value does not represent a

supported algorithm.

[R57] “enc” values MUST either be registered as recommended or required in

the IANA “JSON Web Signature and Encryption Algorithms” registry

established by [4].

The “enc” value is a case-sensitive ASCII string containing a String or URI value.

[R58] The “enc” property MUST be present

[R59] The “enc” property MUST be understood and processed by

implementations.

A list of defined "enc" values for this use can be found in the IANA registry

established in IANA JOSE [4], with the initial contents of this registry are the

values defined in registry “JSON Web Signature and Encryption Algorithms”.

accessjwk This parameter has the same meaning, syntax, and processing rules as the “jwk”

Header Parameter defined in Section 7.1.3 of RFC 7516 [12], except that the key

is the public key to which the JWE was encrypted with; this can be used to

determine the private key needed to decrypt the JWE.

Table 6 – Forming the JOSE Header of the JWE

7.4.3 Step 3: Form the encryption key, initialization vector and AAD

1. Determine the Key Management Mode employed by the algorithm used to determine the

Content Encryption Key value (set in “alg”).

2. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are

employed, generate a random CEK value. See RFC 4086 [6] for considerations on

generating random values.

[R60] The CEK MUST have a length equal to that required for the

content encryption algorithm.

3. When Direct Key Agreement or Key Agreement with Key Wrapping are employed, use

the key agreement algorithm to compute the value of the agreed upon key. When Direct

Key Agreement is employed, let the CEK be the agreed upon key. When Key Agreement

with Key Wrapping is employed, the agreed upon key is used to wrap the CEK.

4. When Key Wrapping, Key Encryption, or Key Agreement with Key Wrapping are

employed, encrypt the CEK to the recipient and let the result be the JWE Encrypted Key.

5. When Direct Key Agreement or Direct Encryption are employed, let the JWE Encrypted

Key be the empty octet sequence.

6. When Direct Encryption is employed, let the CEK be the shared symmetric key.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 33

7. Compute the encoded key value BASE64URL(JWE Encrypted Key).

8. Generate a random JWE Initialization Vector of the correct size for the content

encryption algorithm (if required for the algorithm); otherwise, let the JWE Initialization

Vector be the empty octet sequence.

9. Compute the encoded Initialization Vector value BASE64URL(JWE Initialization

Vector).

10. Create the JSON object(s) containing the desired set of Header Parameters, which

together comprise the JOSE Header: one or more of the JWE Protected Header. There are

no unprotected headers in the JWE compact serialization representation.

11. Compute the Encoded Protected Header value BASE64URL(UTF8(JWE Protected

Header)).

12. Let the Additional Authenticated Data encryption parameter be ASCII(Encoded

Protected Header).

7.4.4 Step 4: Form the JWE Ciphertext and final JWE

The JSON payload to be encrypted must have the claims defined in Table 7.

Claim Description

iss The issuer of the JWS.

[R61] The iss property MUST match the dn of the certificate selected in Step 1,

section 7.4.1.

Table 7 – JWS /JWE issuer property

1. Encrypt the BASE64URL (JSON message) using the CEK, the JWE Initialization

Vector, and the Additional Authenticated Data value using the specified content

encryption algorithm to create the JWE Ciphertext value and the JWE Authentication Tag

(which is the Authentication Tag output from the encryption operation).

2. Compute the encoded ciphertext value BASE64URL(JWE Ciphertext).

3. Compute the encoded Authentication Tag value BASE64URL(JWE Authentication Tag).

4. If a JWE AAD value is present, compute the encoded AAD value BASE64URL(JWE

AAD).

5. Create the desired serialized output. The Compact Serialization of this result is the string

BASE64URL(UTF8(JWE Protected Header)) || '.' || BASE64URL(JWE Encrypted Key) ||

'.' ||BASE64URL(JWE Initialization Vector) || '.' || BASE64URL(JWE Ciphertext) || '.' ||

BASE64URL(JWE Authentication Tag).

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 34

8 References

[1] CNSSI 4009, Committee on National Security Systems Glossary, April 2015

[2] ECMA JSON, The JSON Data Interchange Syntax, 2nd Edition, December 2017

[3] Fielding, Roy Thomas, Architectural Styles and the Design of Network-based Software

Architectures, 2000

[4] IANA JOSE, JSON Object Signing and Encryption (JOSE), November 2020

[5] IETF RFC 2119, Key words for use in RFCs to Indicate Requirement Levels, Scott O.

Bradner, March 1997

[6] IETF RFC 4086, Randomness Requirements for Security, Donald E. Eastlake 3rd and

Steve Crocker and Jeffrey I. Schiller, June 2005. Copyright © The Internet Society

(2005).

[7] IETF RFC 6241, Network Configuration Protocol (NETCONF), Rob Enns and Martin

Björklund and Andy Bierman and Jürgen Schönwälder, June 2011. Copyright © 2011

IETF Trust and the persons identified as the document authors. All rights reserved.

[8] IETF RFC 6749, The OAuth 2.0 Authorization Framework, Dick Hardt, October 2012.

Copyright © 2012 IETF Trust and the persons identified as the document authors. All

rights reserved.

[9] IETF RFC 6819, OAuth 2.0 Threat Model and Security Considerations, Torsten

Lodderstedt and Mark McGloin and Phil Hunt, January 2013. Copyright © 2013 IETF

Trust and the persons identified as the document authors. All rights reserved.

[10] IETF RFC 7165, Use Cases and Requirements for JSON Object Signing and

Encryption (JOSE), Richard Barnes, April 2014. Copyright © 2014 IETF Trust and the

persons identified as the document authors. All rights reserved.

[11] IETF RFC 7515, JSON Web Signature (JWS), Michael Jones and John Bradley and Nat

Sakimura, May 2015. Copyright © 2015 IETF Trust and the persons identified as the

document authors. All rights reserved.

[12] IETF RFC 7516, JSON Web Encryption (JWE), Michael Jones and Joe Hildebrand,

May 2015. Copyright © 2015 IETF Trust and the persons identified as the document

authors. All rights reserved.

[13] IETF RFC 7517, JSON Web Key (JWK), Michael Jones, May 2015. Copyright © 2015

IETF Trust and the persons identified as the document authors. All rights reserved.

[14] IETF RFC 7518, JSON Web Algorithms (JWA), Michael Jones, March 2015. Copyright

© 2015 IETF Trust and the persons identified as the document authors. All rights

reserved.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 35

[15] IETF RFC 7519, JSON Web Token (JWT), Michael Jones and John Bradley and Nat

Sakimura, May 2015. Copyright © 2015 IETF Trust and the persons identified as the

document authors. All rights reserved.

[16] IETF RFC 7591, OAuth 2.0 Dynamic Client Registration Protocol, Justin Richer and

Michael Jones and John Bradley and Maciej Machulak and Phil Hunt, July 2015.

Copyright © 2015 IETF Trust and the persons identified as the document authors. All

rights reserved.

[17] IETF RFC 8040, RESTCONF Protocol, Andy Bierman and Martin Björklund and Kent

Watsen, January 2017. Copyright © 2017 IETF Trust and the persons identified as the

document authors. All rights reserved.

[18] IETF RFC 8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, Barry

Leiba, May 2017. Copyright © 2017 IETF Trust and the persons identified as the

document authors. All rights reserved.

[19] IETF RFC 8485, Vectors of Trust, Justin Richer and Leif Johansson, October 2018.

Copyright © 2018 IETF Trust and the persons identified as the document authors. All

rights reserved.

[20] IETF RFC 8725, JSON Web Token Best Current Practices, Yaron Sheffer and Dick

Hardt and Michael Jones, February 2020. Copyright © 2020 IETF Trust and the

persons identified as the document authors. All rights reserved.

[21] MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture and

Framework, January 2021

[22] NIST SP 800-152, A Profile for U.S. Federal Cryptographic Key Management Systems,

October 2015

[23] Open Banking, Read/Write Data API Specification v3.1.9, May 2019

[24] Open Banking, Security Profile Implementer’s Draft v1.1.2, February 2018

[25] OpenID, OpenID Connect Core 1.0, November 2014

[26] OpenID, OpenID Connect Registration 1.0, November 2014

[27] OpenID, OpenID Connect Discovery 1.0, November 2014

[28] OpenID, Financial-grade API Security Profile 1.0 – Part 1: Baseline, March 2021

[29] W3C VCDM, Verifiable Credentials Data Model 1.1, November 2021

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 36

Appendix A Authentication Framework Threat Model (Informative)

To contextualize and motivate the usage of OAuth2 together with OIDC and the recommendations

on authentication flows made, this document briefly discusses the threat model that OAuth2 and

OIDC are intended to address. The threat model for OAuth2 and OIDC is documented in IETF

RFC 6819 [9]. This document will not detail the individual attack vectors but rather detail the

components of the attack surface and the assumptions on the attacker.

That basic architecture and, thus three main attack surfaces, are:

• Authentication/Authorization Servers with elements such as

o usernames and passwords

o client identifiers and secrets

o client-specific authentication and authorization refresh tokens

o client-specific access tokens

o HTTPS certificates or public keys or both

o per-authorization process data such as redirect URIs

• Resource Servers

o user data (out of scope)

o HTTPS certificates or public keys or both

o either authorization server credentials or authorization server shared secret/public key

o access tokens

• Client

o client id (and client secret or corresponding client credential)

o one or more refresh (possibly persistent) tokens and access tokens

o a typically transient per end user or other security or delegation related context

o trusted certification authority (CA) certificates (HTTPS) or W3C Verifiable

Credentials

o per-authorization process data

Note that a resource server typically has no knowledge of refresh tokens, user passwords, or client

secrets to enable separations of concern.

The assumptions on a potential attacker are as follows:

• Full access to the network between the client and authorization servers and the client and

the resource server), respectively (Buyer and Seller or vice versa). The attacker may also

intercept any communications between Buyer and Seller. However, the attacker is not

assumed to have access to communication between the authorization server and resource

server since this is within the trust boundary of Buyer and Seller. If an attacker gains

access to either trust domain, this framework no longer applies. To mitigate such a

scenario, a Zero Trust framework should be implemented.

• An attacker has unlimited resources to mount an attack.

• Two of the three parties involved in the OAuth protocol may collude to initiate an attack

against the 3rd party. For example, the client (e.g., Buyer) and authorization server (e.g.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 37

Seller) may be under control of an attacker and collude to trick Buyer or Seller to gain

access to resources.

Given the data on the three components defined in section 6.2, we can now detail the full attack

surface across all components:

• Client Tokens such as Obtaining Access and Refresh Tokens or client secrets

• Authorization Endpoints such as password phishing

• Token Endpoints such as eavesdropping access tokens

• Obtaining Authorization from:

o Authorization ‘code’

o Implicit Grants

o Resource Owner Password Credentials

o Client Credentials

• Refreshing of Access Tokens such as Refresh Token Phishing

• Accessing protected resources such as Replay of Authorized Resource Server Requests

IETF RFC 6819 [9] also lists mitigation strategies against attacks on those attack surfaces such as

limiting the length of validity and number of uses of an Access Token.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 38

Appendix B Why Decentralized Public Key Infrastructure? (Informative)

Currently 3rd parties such as Domain Name Services (DNS) registrars, the Internet Corporation

for Assigned Names and Numbers (ICANN), X.509 Certificate Authorities (CAs), or social media

companies are responsible for the creation and management of online identifiers and the secure

communication between them.

As evidenced over the last 20+ years, this design has demonstrated serious usability and security

shortcomings.

When DNS and X.509 Public Key Infrastructure (PKIX) as described in NIST publication SP 800-

32 was designed, the internet did not have a way to agree upon the state of a registry (or database)

in a reliable manner with no trust assumptions. Consequently, standard bodies designated trusted

3rd parties (TTPs) to manage identifiers and public keys. Today, virtually all Internet software

relies on these authorities. These trusted 3rd parties, however, are central points of failure, where

each could compromise the integrity and security of large portions of the Internet. Therefore, once

a TTP has been compromised, the usability of the identifiers it manages is also compromised.

As a result, companies spend significant resources fighting security breaches caused by CAs, and

public internet communications that are both truly secure and user-friendly are still out of reach

for most.

Therefore, this standard suggests an identity approach where every identity is controlled by its

Principal Owner and not by a 3rd party, unless the Principal Owner has delegated control to a 3rd

party. A Principal Owner is defined as the entity controlling the public key(s) which control the

identity and its identifiers upon inception of the identity.

Identity in the context of this document is to mean the following:

Identity = <Identifier(s)> + <associated data>

where associated data refers to data describing the characteristics of the identity that is associated

with the identifier(s). An example of such associated data could be an X.509 issues by a CA.

Such an approach suggests a decentralized, or at least strongly federated, infrastructure.

Decentralized in this context means that there is no single point of failure in the PKI where possibly

no participants are known to one another. And strongly federated in this context means that there

is a known, finite number of participants, without a single point of failure in the PKI. However, a

collusion of a limited number of participants in the federated infrastructure may still lead to a

compromised PKI. The consensus thresholds required for a change in the infrastructure needs to

be defined by each identity federation.

For a LSO APIs to properly operate, communication must be trusted and secure. Communications

are secured through the safe delivery of public keys tied to identities. The Principal Owner of the

identity uses a corresponding secret private key to both decrypt messages sent to them, and to

prove they sent a message by signing it with its private key.

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 39

PKI systems are responsible for the secure delivery of public keys. However, the commonly used

X.509 PKI (PKIX) undermines both the creation and the secure delivery of these keys.

In PKIX services are secured through the creation of keys signed by CAs. However, the complexity

of generating and managing keys and certificates in PKIX have caused companies to manage the

creation and signing of these keys themselves, rather than leaving it to their clients. This creates

major security concerns from the outset, as it results in the accumulation of private keys at a central

point of failure, making it possible for anyone with access to that repository of keys to compromise

the security of connections in a way that is virtually undetectable.

The design of X.509 PKIX also permits any of the thousands of CAs to impersonate any website

or web service. Therefore, entities cannot be certain that their communications are not being

compromised by a fraudulent certificate allowing a PITM (Person-in-the-Middle) attack. While

workarounds have been proposed, good ones do not exist yet.

Decentralized Public Key Infrastructure (DPKI) has been proposed as a secure alternative. The

goal of DPKI is to ensure that, unlike PKIX, no single third-party can compromise the integrity

and security of a system employing DPKI as a whole.

Within DPKI, a Principal Owner can be given direct control and ownership of a globally readable

identifier by registering the identifier for example in a Distributed Ledger, often referred to as a

Blockchain, or other system that guarantees data integrity without a central point of failure.

Simultaneously, Distributed Ledgers allow for the assignment of arbitrary data such as public keys

to these identifiers and permit those values to be globally readable in a secure manner that is not

vulnerable to the PITM attacks that are possible in PKIX. This is done by linking an identifier’s

lookup value to the latest and most correct public keys for that identifier. In this design, control

over the identifier is returned to the Principal Owner.

Therefore, it is no longer trivial for any one entity to undermine the security of the entire DKPI

system or to compromise an identifier that is not theirs overcoming the challenges of typical PKI.

Furthermore, DPKI requires a public registry of identifiers and their associated public keys that

can be read by anyone but cannot be compromised. As long as this registration remains valid, and

the Principal Owner is able to maintain control of their private key, no 3rd party can take ownership

of that identifier without resorting to direct coercion of the Principal Owner. Any Principal Owner

in a DPKI system must be able to broadcast a message if it is well-formed within the context of

the DPKI. Other peers in the system do not require admission control. This implies a decentralized

consensus mechanism naturally leading to the utilization of systems such as distributed ledgers.

Therefore, given two or more histories of updates, any Principal Owner must be able to determine

which one is preferred due to security by inspection. This implies the existence of a method of

ascertaining the level of resources backing a DPKI history such as the hash power in the Bitcoin

blockchain based on difficulty level and nonce.

Requirements of identifier registration in DPKI is handled differently from DNS. Although

registrars may exist in DPKI, these registrars must adhere to several requirements that ensure that

identities belong to the entities they represent. This is achieved the following way:

 MEF 128

MEF 128 © MEF Forum 2022. Any reproduction of this document, or any portion thereof, shall contain the

following statement: “Reproduced with permission of MEF Forum.” No user of this document is

authorized to modify any of the information contained herein.

Page 40

• Private keys must be generated in a manner that ensures they remain under the Principal

Owner’s control.

• Generating key pairs on behalf of Principal Owner must not be allowed.

• Principals Owners must always be in control of their identifiers and the corresponding

public keys. However, Principal Owners may extend control of their identifier to third

parties, if they prefer, for example for public key recovery purposes.

• Extension of control of identifiers to 3rd parties must be an explicit, informed decision by

the Principal Owner of such identifier.

• Private keys must be stored and/or transmitted in a secure manner.

• No mechanism should exist that would allow a single entity to deprive a Principal Owner

of their identifier without their consent. This implies that:

o Once a namespace for an identity is created it must not be possible to destroy it.

o Namespaces in a DPKI must not contain blacklisting mechanisms that would allow

anyone to invalidate identifiers that do not belong to them.

o Once set, namespace rules within a DPKI must not be altered to introduce any new

restrictions for renewing or updating identifiers. Otherwise, it would be possible to

take control of identifiers away from Principals Owners without their consent.

• The rules for registering and renewing identifiers in a DPKI must be transparent and

expressed in simple terms.

Note that if registration is used as security to an expiration or other policy, the Principal Owner

must be explicitly and timely warned that failure to renew the registration on time could result in

the Principal Owner losing control of the identifier.

• Also, within a DPKI, processes for renewing or updating identifiers must not be modified

to introduce new restrictions for updating or renewing an identifier, once issued.

• Finally, within a DPKI all network communications for creating, updating, renewing, or

deleting identifiers must be sent via a non-centralized mechanism. This is necessary to

ensure that a single entity cannot prevent identifiers from being updated or renewed.

While it might not yet be common practice to implement DPKI, DPKI mitigates the PKIX threat

model, and is either already in use as with the state government of British Columbia in Canada, or

under active development and regulatory consideration as within EU countries such as Germany

to meet the EU’s General Data Privacy Regulation directive or with the Department of Homeland

Security in the US.

	1 List of Contributing Members
	2 Abstract
	3 Terminology and Abbreviations
	4 Compliance Levels
	5 Introduction
	6 MEF LSO Security Architecture
	6.1 MEF LSO API Security Architecture Prerequisites
	6.2 Supported Authentication Frameworks
	6.3 Registration, Staging, Authentication and Authorization
	6.4 Hybrid Flow Request with Intent Id
	6.5 Hybrid Grant Flow Parameters
	6.5.1 Example hybrid grant flow request/response
	6.5.1.1 HTTP Request JWS/JWE
	6.5.1.2 HTTP Response: id_token returned
	6.5.1.3 Id_token returned

	7 JWT Security Suite Information v1.0
	7.1 General Guidance for JWT Best Practice
	7.2 JSON Web Key Set (JWKS) Endpoints
	7.3 General outline for creating a JWS
	7.3.1 Step 1: Select the certificate and private key to sign the JWS
	7.3.2 Step 2: Form the JOSE Header
	7.3.3 Step 3: Form the payload to be signed
	7.3.4 Step 4: Sign and encode the payload
	7.3.5 Step 5: Assemble the JWS

	7.4 General Outline for creating a JWE
	7.4.1 Step 1: Select the certificate and private key to sign the JWE
	7.4.2 Step 2: Form the JOSE Header of the JWE
	7.4.3 Step 3: Form the encryption key, initialization vector and AAD
	7.4.4 Step 4: Form the JWE Ciphertext and final JWE

	8 References
	Appendix A Authentication Framework Threat Model (Informative)
	Appendix B Why Decentralized Public Key Infrastructure? (Informative)

