

MEF 135 © MEF Forum 2023. Any reproduction of this document, or any portion thereof, shall contain the
following statement: “Reproduced with permission of MEF Forum.” No user of this document is
authorized to modify any of the information contained herein.

MEF Standard

MEF 135

LSO Legato Service Inventory Management API -
Developer Guide

October 2023

MEF 135 © MEF Forum 2023. Any reproduction of this document, or any portion thereof, shall contain the
following statement: “Reproduced with permission of MEF Forum.” No user of this document is
authorized to modify any of the information contained herein.

Disclaimer

© MEF Forum 2023. All Rights Reserved.

The information in this publication is freely available for reproduction and use by any recipient
and is believed to be accurate as of its publication date. Such information is subject to change
without notice and MEF Forum (MEF) is not responsible for any errors. MEF does not assume
responsibility to update or correct any information in this publication. No representation or
warranty, expressed or implied, is made by MEF concerning the completeness, accuracy, or
applicability of any information contained herein and no liability of any kind shall be assumed by
MEF as a result of reliance upon such information.

The information contained herein is intended to be used without modification by the recipient or
user of this document. MEF is not responsible or liable for any modifications to this document
made by any other party.

The receipt or any use of this document or its contents does not in any way create, by implication
or otherwise:

a) any express or implied license or right to or under any patent, copyright, trademark or
trade secret rights held or claimed by any MEF member which are or may be associated
with the ideas, techniques, concepts or expressions contained herein; nor

b) any warranty or representation that any MEF members will announce any product(s)
and/or service(s) related thereto, or if such announcements are made, that such
announced product(s) and/or service(s) embody any or all of the ideas, technologies, or
concepts contained herein; nor

c) any form of relationship between any MEF member and the recipient or user of this
document.

Implementation or use of specific MEF standards, specifications, or recommendations will be
voluntary, and no Member shall be obliged to implement them by virtue of participation in MEF
Forum. MEF is a non-profit international organization to enable the development and worldwide
adoption of agile, assured and orchestrated network services. MEF does not, expressly or
otherwise, endorse or promote any specific products or services.

3 / 57

Table of Contents

List of Contributing Members
1. Abstract
2. Terminology and Abbreviations
3. Compliance Levels
4. Introduction

4.1. Description
4.2. Conventions in the Document
4.3. Relation to Other Documents
4.4. Approach
4.5. High-Level Flow

5. API Description
5.1. High-level Use Cases
5.2. API Endpoints and Operations Summary

5.2.1. SOF Service Inventory API Endpoints
5.2.2. BUS Service Inventory API Endpoints

5.3. Integration of Service Specifications into Service Inventory API
5.4. Sample Service Specification
5.5. Model structure and validation
5.6. Security Considerations

6. API Interactions and Flows
6.1. Use case 1: Retrieve Service by Identifier

6.1.1. Service State Machine
6.1.2. Specifying Place Details

6.1.2.1. Fielded Address
6.1.2.2. Formatted Address
6.1.2.3. Geographic Point
6.1.2.4. Geographic Address Label
6.1.2.5. Geographic Site Reference
6.1.2.6. Geographic Address Reference

6.2. Use case 2: Retrieve Service List
6.3. Use case 3: Register for Notifications
6.4. Use case 4: Send Notification

7. API Details
7.1. API patterns

7.1.1. Indicating errors
7.1.1.1. Type Error
7.1.1.2. Type Error400
7.1.1.3. enum Error400Code
7.1.1.4. Type Error401
7.1.1.5. enum Error401Code

4 / 57

7.1.1.6. Type Error403
7.1.1.7. enum Error403Code
7.1.1.8. Type Error404
7.1.1.9. Type Error422
7.1.1.10. enum Error422Code
7.1.1.11. Type Error500

7.2. Management API Data model
7.2.1. Service

7.2.1.1 Type Service
7.2.1.2. enum ServiceStateType
7.2.1.3. Type ServiceRelationship
7.2.1.4. Type ServiceOrderItemRef
7.2.1.5. Type ServiceRef
7.2.1.6. Type MefServiceConfiguration

7.2.2. Place representation
7.2.2.1. Type RelatedPlaceRefOrValue
7.2.2.2. Type FieldedAddress
7.2.2.3. Type FieldedAddressValue
7.2.2.4. Type FormattedAddress
7.2.2.5. Type GeographicPoint
7.2.2.6. Type GeographicAddressLabel
7.2.2.7. Type GeographicSubAddress
7.2.2.8. Type GeographicSubAddressUnit
7.2.2.9. Type GeographicAddressRef
7.2.2.10. Type GeographicSiteRef

7.2.3. Notification registration
7.2.3.1. Type EventSubscriptionInput
7.2.3.2. Type EventSubscription

7.2.4. Common
7.2.4.1. enum BusSofType
7.2.4.2. Type Note_BusSof
7.2.4.3. Type RelatedContactInformation

7.3. Notification API Data model
7.3.1. Type Event
7.3.2. Type ServiceEvent
7.3.3. Type ServiceEventPayload
7.3.4. enum ServiceEventType

8. References
Appendix A Acknowledgments

5 / 57

List of Contributing Members

The following members of the MEF participated in the development of this document and
have requested to be included in this list.

Member

Amartus

Cisco

Lumen

Verizon

Table 1. Contributing Members

6 / 57

1. Abstract

This standard is intended to assist the implementation of the Application Programming
Interfaces (APIs) for the Service Inventory function of the Service Orchestration
Functionality at the LSO Legato Interface Reference Point. The Legato Interface Reference
Point is defined in the MEF 55.1 [MEF55.1] at the interface between the Business
Application Systems layer and Service Orchestration Functionality layer.

This standard normatively incorporates the following files by reference as if they were part
of this document from the GitHub repository:

MEF-LSO-Legato-SDK

commit id: 0e83943f529e87c036a083926a1b28a0a3523c5e

serviceApi/inventory/serviceInventoryManagement.api.yaml

serviceApi/inventory/serviceInventoryNotification.api.yaml

https://github.com/MEF-GIT/MEF-LSO-Legato-SDK
https://github.com/MEF-GIT/MEF-LSO-Legato-SDK/tree/0e83943f529e87c036a083926a1b28a0a3523c5e
https://github.com/MEF-GIT/MEF-LSO-Legato-SDK/blob/0e83943f529e87c036a083926a1b28a0a3523c5e/serviceApi/inventory/serviceInventoryManagement.api.yaml
https://github.com/MEF-GIT/MEF-LSO-Legato-SDK/blob/0e83943f529e87c036a083926a1b28a0a3523c5e/serviceApi/inventory/serviceInventoryNotification.api.yaml

7 / 57

2. Terminology and Abbreviations

This section defines the terms used in this document. In many cases, the normative
definitions of terms are found in other documents. In these cases, the third column is used to
provide the reference that is controlling, in other MEF or external documents.

In addition, terms defined in the following documents are included in this document by
reference, and are not repeated in the table below.

MEF 55.1, Lifecycle Service Orchestration (LSO): Reference Architecture and
Framework February 2021 [MEF 55.1]

Term Definition Source

API Endpoint

The endpoint of a communication channel (the
complete URL of an API Resource) to which the
HTTP-REST requests are addressed in order to
operate on the API Resource

rapidapi.com
This document

API Resource

A REST Resource. In REST, the primary data
representation is called Resource. In this document,
API Resource is defined as a OAS SchemaObject
with specified API Endpoints

restfulapi.net
This document

Business
Applications

The Service Provider functionality supporting
Business Management Layer functionality

MEF 55.1

OAS
Document

An API description document in the OpenAPI
specification format.

openapis.org

OpenAPI
The OpenAPI 3.0 Specification, formerly known as
the Swagger specification is an API description
format for REST APIs.

spec.openapis.org

Operation
An interaction between the BUS and SOF, potentially
involving multiple back and forth transactions.

This document

SchemaObject
The construct that allows the definition of input and
output data types. These types can represent object
classes, as well as primitives and arrays. specification

spec.openapis.org

https://rapidapi.com/blog/api-glossary/endpoint/
https://restfulapi.net/resource-naming/
https://www.openapis.org/faq/style-guide
http://spec.openapis.org/oas/v3.0.3
http://spec.openapis.org/oas/v3.0.3#schema-object

8 / 57

Term Definition Source

Service
Orchestration
Functionality

The set of service management layer functionality
supporting an agile framework to streamline and
automate the service lifecycle in a sustainable fashion
for coordinated management supporting design,
fulfillment, control, testing, problem management,
quality management, usage measurements, security
management, analytics, and policy-based
management capabilities providing coordinated end-
to-end management and control of Services

MEF 55.1

Table 2. Terminology

Term Definition Source

API
Application Programming Interface. In this document, API is used
synonymously with REST API.

This
document

BUS Business Applications MEF 55.1

IRP Interface Reference Point
This
document

OAS OpenAPI Specification openapis.org

SOF Service Orchestration Functionality MEF 55.1

Table 3. Abbreviations

https://www.openapis.org/faq/style-guide

9 / 57

3. Compliance Levels

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED",
"MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14
(RFC 2119 [rfc2119], RFC 8174 [rfc8174]) when, and only when, they appear in all
capitals, as shown here. All key words must be in bold text.

Items that are REQUIRED (contain the words MUST or MUST NOT) are labeled as [Rx]
for required. Items that are RECOMMENDED (contain the words SHOULD or SHOULD
NOT) are labeled as [Dx] for desirable. Items that are OPTIONAL (contain the words
MAY or OPTIONAL) are labeled as [Ox] for optional.

10 / 57

4. Introduction

This standard specification document describes the Application Programming Interface
(API) for Service Inventory Management functionality of the LSO Legato Interface
Reference Point (IRP) as defined in the MEF 55.1 Lifecycle Service Orchestration (LSO):
Reference Architecture and Framework [MEF55.1]. The LSO Reference Architecture is
shown in Figure 1 with the IRP highlighted.

Figure 1. The LSO Reference Architecture

4.1. Description

This standard is scoped to cover APIs for following Service Orchestration Functionalities:

Service Inventory Management
Service Notification

Other Service Orchestration Functionalities not addressed in this standard include (but not
limited to):

Service Ordering and Fulfillment Service Catalog Management
Service Qualification
Service Activation Testing
Service Problem Management
Service Quality Management
Service Usage measurements and Reporting (in support of billing)
License Management

This document supports interactions over the Legato interface within a single operator. Both
the Business Applications (BUS) and Service Orchestration Functionality (SOF) systems
use the information contained within this document.

11 / 57

This standard is intended to support the design of API implementations that enable inter-
operable SOF operations (in scope of this standard) across the Legato IRP.

This standard is based on TMF Open API (v4.0.0) for Service Inventory TMF 638.

The Service Inventory API allows the BUS to retrieve information about existing
(previously ordered) Services from the SOF's Inventory. The SOF's Service Inventory is a
set of instances of Services that have been ordered by a BUS.

4.2. Conventions in the Document

Code samples are formatted using code blocks. When notation << some text >> is used in
the payload sample it indicates that a comment is provided instead of an example value
and it might not comply with the OpenAPI definition.
Model definitions are formatted as in-line code (e.g. Service).
In UML diagrams the default cardinality of associations is 0..1. Other cardinality
markers are compliant with the UML standard.
In the API details tables and UML diagrams required attributes are marked with a * next
to their names.
In UML sequence diagrams {{variable}} notation is used to indicate a variable to be
substituted with a correct value.

4.3. Relation to Other Documents

The API definition builds on TMF638 Service Inventory API REST Specification v4.0.1
[TMF 638]. Service Inventory Use Cases must support the use of any of MEF service
specifications as payload, in particular, those defined in:

LSO Legato Service Specification - SD-WAN Schema Guide in MEF W100 [MEF
W100].
LSO Legato Service Specification - Carrier Ethernet Schema Guide in MEF W101
[MEF W101].
LSO Legato Service Specification - IP/IP-VPN Schema Guide in MEF W102 [MEF
W102].

4.4. Approach

As presented in Figure 2. the Legato API frameworks consist of three structural
components:

Generic API framework
Service-independent information (Function-specific information and Function-specific
operations)

12 / 57

Service-specific information (MEF service specification data model)

Figure 2. Legato API Structure

The essential concept behind the framework is to decouple the common structure,
information, and operations from the specific service information content.
Firstly, the Generic API Framework defines a set of design rules and patterns that are
applied across all Legato APIs.
Secondly, the service-independent information of the framework focuses on a model of a
particular Legato functionality and is agnostic to any of the service specifications. For
example, this standard is describing the Service model and operations that allow inventory
queries of any service that is aligned with either MEF or custom service specifications.
Finally, the service-specific information part of the framework focuses on MEF service
specifications that define business-relevant attributes and requirements for trading MEF
services.

This Developer Guide is not defining MEF service specifications but can be used in
combination with any service specifications defined by or compliant with MEF. Examples
of MEF Service Model (MSM) schema include:

MEF W100: SD-WAN Services based on MEF 70 [MEF70]
MEF W101: Carrier Ethernet services based on MEF 10.4 [MEF10.4] and MEF 26.2
[MEF26.2]
MEF W102: IP Services based on MEF 61.1 [MEF61.1] and MEF 61.1.1 [MEF61.1.1]

4.5. High-Level Flow

The Legato Service Catalog, Service Order, Service Inventory, and Service Notification
APIs in essence allow the BUS to request SOF to configure and activate one or more
services as part of an order fulfillment process. Figure 3 presents a high-level flow of use of
all of the above-mentioned APIs.

13 / 57

Figure 3. High-Level Flow

The following steps describe the high-level flow:

The BUS system registers for notifications.
As part of the ordering flow, the BUS system receives the product order (through
Cantata or Sonata) which triggers the fulfillment processes in the BUS system.
The BUS system first queries the Service Catalog to retrieve the ServiceSpecifications
supported by the SOF
Note1: Service Catalog and the process of mapping and decomposing a product order
to identify appropriate ServiceSpecifications is out of scope for this standard. Note2: The

14 / 57

mechanisms to design, construct and populate the ServiceSpecifications into SOF Service
Catalog is out of scope for this standard.

Each specific instance of a ServiceSpecification (retrieved from the Service Catalog)
minimally contains a reference to target Service schema. A Service schema describes
the set of properties that characterize that service and are exchanged over Legato
IRP.

During the service configuration and activation phase, the BUS system uses the Service
Order API to instantiate the Service utilizing the ServiceSpecifications (retrieved from the
Service Catalog).

The BUS achieves this by creating a ServiceOrder which contains a one or more
ServiceOrderItems.
Each ServiceOrderItem carries some ServiceConfiguration data and the type of operation
(add/modify/delete) to be performed (instructions to SOF).
The SOF utilizes Service schema referenced in the ServiceSpecification to validate the
ServiceConfiguration data passed in by the BUS.
The ServiceOrder / ServiceOrderItem is processed by the SOF as per the state transition
rules described in MEF W99
The SOF reports the ServiceOrder and ServiceOrderItem state changes
The SOF performs the actions (add/modify/delete) specified in a ServiceOrderItem on the
specified target Service instance in the Service Inventory as per the state transition
rules described in 6.1.1. Service State Machine
The SOF reports the Service instance state changes

The BUS system uses the same Service Order API to create new Service instances as well
as update existing Service instance's properties or trigger state transitions, and delete
existing Service instance.

15 / 57

5. API Description

This section presents the API structure and design patterns. It starts with the high-level use
cases diagram. Then it describes the REST endpoints with use case mapping. Next, it
explains the design pattern that is used to combine service-agnostic and service-specific
parts of API payloads. Finally, payload validation and API security aspects are discussed.

5.1. High-level Use Cases

Figure 4. presents a high-level use case diagram. It aims to help understand the endpoint
mapping. Use cases are described extensively in chapter 6

Figure 4. Use cases

5.2. API Endpoints and Operations Summary

5.2.1. SOF Service Inventory API Endpoints

Base URL: https://{{serverBase}}:{{port}}{{?/sof_prefix}}/mefApi/legato/serviceInventory/v5/

The following API Endpoints are used by BUS to create and query for Service instances and
to subscribe/unsubscribe to service notifications. The endpoints and corresponding data
model are defined in:

serviceApi/inventory/serviceInventoryManagement.api.yaml

API
Endpoint

Description
Use Case
mapping

16 / 57

API
Endpoint

Description
Use Case
mapping

GET

/service/{{id}}

A request initiated by the BUS to retrieve a specific Service
from the service inventory system in SOF, that match the id
provided as path parameter

UC 1:
Retrieve
Service by
Service
Identifier

GET /service

A request initiated by the BUS to retrieve a list of Services
from the service inventory system in SOF, that match the
filter criteria provided as query parameters

UC 2:
Retrieve List
of Services

POST /hub
A request initiated by the BUS to instruct the SOF to send
notification

UC 3:
Register for
Notifications

GET /hub/{{id}}

A request initiated by the BUS to retrieve a specific
EventSubscription from the service order management system
in SOF, that matches the provided id provided as path
parameter

UC 4:
Register for
Notifications

DELETE

/hub/{{id}}

A request initiated by the BUS to instruct the SOF to stop
sending notifications

UC 4:
Register for
Notifications

Table 4. SOF Service Inventory API Endpoints

[R1] SOF MUST support all API endpoints listed in Table 4.

5.2.2. BUS Service Inventory API Endpoints

Base URL: https://{{serverBase}}:{{port}}{{?/bus_prefix}}/mefApi/legato/serviceInventoryNotification/v5/

The following API Endpoints are used by SOF to post notifications to registered BUS
listeners. The endpoints and corresponding data model are defined in

serviceApi/inventory/serviceInventoryNotification.api.yaml

API Endpoint Description
Use Case
mapping

POST /listener/serviceCreateEvent
A request initiated by the SOF to notify BUS
on Service instance creation

5. Send
Notifications

POST /listener/serviceDeleteEvent
A request initiated by the SOF to notify BUS t
on Service instance deletion

5. Send
Notifications

17 / 57

API Endpoint Description
Use Case
mapping

POST

/listener/serviceStateChangeEvent

A request initiated by the SOF to notify BUS
on ServiceO instance state change

5. Send
Notifications

Table 5. BUS Service Inventory API Endpoints

[O1] The BUS MAY support API endpoints listed in Table 5.

[O2] The BUS MAY register to receive service notifications.

[R2] The SOF MUST support sending notification to API endpoints listed in Table 5 to
registered BUS.

5.3. Integration of Service Specifications into Service
Inventory API

Service specifications are defined using JsonSchema (draft 7) format JSON Schema draft 7
and are integrated into the Service using the TMF extension pattern.

The extension hosting type in the API data model is MefServiceConfiguration. The @type attribute of
that type must be set to a value that uniquely identifies the service specification. A unique
identifier for MEF standard service specifications is in URN format and is assigned by
MEF. This identifier is provided as root schema $id and in service specification
documentation. Use of non-MEF standard service definitions is allowed. In such a case the
schema identifier must be agreed upon between the BUS and the SOF.

The example below shows a header of a Service Specification schema, which is describing
the IP Uni, where "$id": urn:mef:lso:spec:legato:ip-uni:v0.0.1:all is the above-mentioned URN:

"$schema": http://json-schema.org/draft-07/schema#
"$id": $id": urn:mef:lso:spec:legato:ip-uni:v0.0.1:all
title: MEF LSO Legato - IP UNI Specification

Service specifications are provided as Json schemas without the MefServiceConfiguration context.

Service-specific attributes are introduced to the Service with the serviceConfiguration attribute of
type MefServiceConfiguration which is used as an extension point for service-specific attributes.

Implementations might choose to integrate selected service specifications to data model
during development. In such a case an integrated data model is built and service
specifications are in an inheritance relationship with MefServiceConfiguration as described in the
OAS specification. This pattern is called Static Binding. The SDK is additionally shipped
with a set of API definitions that statically bind all service-related APIs (POQ, Quote,

18 / 57

Order, Inventory) with all corresponding service specifications available in the release. The
snippets below present an example of a static binding of the envelope API with several MEF
service specifications, from both MefServiceConfiguration and service specification point of view:

MefServiceConfiguration:
 description:
 MefServiceConfiguration is used as an extension point for MEF-specific
 service payload. The `@type` attribute is used as a discriminator
 discriminator:
 mapping:
 urn:mef:lso:spec:legato:ip-enni:v0.0.1:all: "#/components/schemas/IpEnni"
 urn:mef:lso:spec:legato:ipvc-endpoint:v0.0.1:all: "#/components/schemas/IpvcEndpoint"
 urn:mef:lso:spec:legato:ip-uni:v0.0.1:all: "#/components/schemas/IpUni"
 urn:mef:lso:spec:legato:ethernet-uni-access-link-trunk:0.0.1:all:
"#/components/schemas/EthernetUniAccessLinkTrunk"
 urn:mef:lso:spec:legato:ip-uni-access-link:0.0.1:all: "#/components/schemas/IpUniAccessLink"
 urn:mef:lso:spec:legato:ipvc:v0.0.1:all: "#/components/schemas/Ipvc"
 urn:mef:lso:spec:legato:ip-uni-access-link-trunk.0.1:all: "#/components/schemas/IpUniAccessLinkTrunk"
 urn:mef:lso:spec:legato:ip-enni-link:v0.0.1:all: "#/components/schemas/IpEnniLink"
 propertyName: "@type"
 properties:
 "@type":
 description:
 The name of the type, defined in the JSON schema specified above, for
 the service that is the subject of the Request. The named type must be a
 subclass of MefServiceConfiguration.
 type: string

IpvcEndpoint:
 allOf:
 - $ref: "#/components/schemas/MefServiceConfiguration"
 - description:
 "An IPVC End Point is a logical entity at an EI, to which a subset of
 packets that traverse the EI is mapped. Reference MEF 61.1 Section 7.4
 IP Virtual Connections and IPVC End Points."

Alternatively, implementations might choose not to build an integrated model and choose a
different mechanism allowing runtime validation of service-specific fragments of the
payload. The system can validate a given service against a new schema without
redeployment. This pattern is called Dynamic Binding.

Regardless of chosen implementation pattern, the HTTP payload is exactly the same. Both
implementation approaches must conform to the requirements specified below.

[R3] MefServiceConfiguration type is an extension point that MUST be used to integrate service
specifications' properties into a request/response payload.

[R4] The @type property of MefServiceConfiguration MUST be used to specify the type of the
extending entity.

[R5] Service attributes specified in the payload must conform to the service specification
specified in the @type property.

19 / 57

Figure 5. The Extension Pattern with Sample Service-Specific Extensions

Figure 5 presents two MEF <<ServiceSpecifications>> that represent IPVC and IPVC Endpoint
services. When these services are used as a Service payload the @type of MefServiceConfiguration
takes "urn:mef:lso:spec:legato:ipvc:v0.0.1:all" or "urn:mef:lso:spec:legato:ipvc-endpoint:v0.0.1:all" value to
indicate which service specification should be used to interpret a set of service-specific
attributes included in the payload. An example of service configuration is presented in
Section 6.2.

The all suffix after the service type name in the URN comes from the approach that the
service schemas may differ depending on the function (POQ, Quote, Order, or Inventory)
they are used with. The value all means that one version of schema is shared by all
functions.

5.4. Sample Service Specification

The Legato SDK contains service specification definitions, from which IPVC and IPVC
End Point are used in the payload samples in this section. The schemas are located in the
SDK package at:

serviceSchema/ip/ipvc.yaml

serviceSchema/ip/ipvcEndPoint.yaml

The service specification data model definitions are available as JsonSchema (version draft
7) documents. Figures 6 and 7 depict simplified UML views on these data models in which:

the mandatory attributes are marked with *,
the mandatory relations have a cardinality of 1 or 1..*,
some relations and attributes that are not essential to the understanding of the service
specification model are omitted.

20 / 57

The red color in Figures 6 and 7 below highlights the data model of services. Some parts of
the model are skipped for examples clarity. This is denoted by the <<skipped>> text in diagrams
and in json snippets later in the document. Please note that this document uses service
specifications just for the sake of example on how to use the Service Inventory API together
with the Service payload. The detailed examples of any service specification is not in the
scope of this document.

Figure 6. A simplified view on IPVC service specification data model

Figure 7. A simplified view of IPVC End Point service specification data model

Service specifications define several service-related and envelope-related requirements. For
example:

for an IPVC End Point service two mandatory relationships must be specified, one
toward the IPVC (IPUNI_ENDPOINT_OF_IPVC), and a second toward the IP UNI (CONNECTS_TO_IPUNI)
for an IP UNI Access Link Trunk service a place relationship (INSTALL_LOCATION) must be
specified

21 / 57

Figure 8. Example use case configuration

Figure 8 shows an example (limited to class names and relations) of a typical setup of the
Advanced Internet Access service. It is built from 5 services:

IPVC
IPVC End Point
IP UNI
IP UNI Access Link
IP UNI Access Link Trunk

The example highlights IPVC and IPVC End Point (with red lines) that were mentioned
earlier. Note the relations outgoing from the IpvcEndPoint. The relations are provided with the
use of serviceRelationship attribute.

5.5. Model structure and validation

The structure of the payloads exchanged via Legato Service API endpoints is defined using:

OpenAPI version 3.0 for the service-agnostic part of the payload
JsonSchema (draft 7) for the service-specific part of the payload

[R6] Implementations MUST use payloads that conform to these definitions.

[R7] A service specification may define additional consistency rules and requirements that
MUST be respected by implementations. These are defined for:

required relation type, multiplicity to other services
related contact information roles that are to be defined for a service
relations to places (locations) and their roles that are to be defined for a service

22 / 57

5.6. Security Considerations

Although the Legato IRP is internal to a Service Provider/Operator business boundary, it is
expected that some minimal security mechanisms are in place for any communication over
this IRP. There must also be authorization mechanisms in place to control what a particular
BUS or SOF is allowed to do and what information may be obtained. However, the
definition of the exact security mechanism and configuration is outside the scope of this
document. The LSO Security mechanisms are defined by MEF 128 LSO API Security
Profiles [MEF128].

23 / 57

6. API Interactions and Flows

This section provides a detailed insight into the API functionality, use cases, and flows. It
starts with Table 6 presenting a list and short description of all business use cases then
examples for each of them.

Use
Case
#

Use Case Name Use Case Description

1
Retrieve Service by
Service Identifier

A request initiated by the BUS to retrieve the details of a
specific Service with a given Service Identifier.

2
Retrieve Service
List

A request initiated by the BUS to retrieve a list of Services
that match the provided filter criteria

3
Register for
Notifications

The BUS requests to subscribe to notifications.

4 Send Notifications A notification initiated by the SOF to the BUS

Table 6. Use cases description

6.1. Use case 1: Retrieve Service by Identifier

To get detailed and up-to-date information about the Service, the BUS sends a Retrieve
Service by Identifier request using a GET /service/{id} operation.

The flow is a simple request-response pattern, as presented in Figure 9:

Figure 9. Use case 1: Retrieve Service by Service Identifier flow

The model taking part in this use case is presented in Figure 10:

24 / 57

Figure 10. Use case 1: Service model

Example request and response:

GET /mefApi/legato/serviceInventory/v5/service/00000000-5555-6666-7777-000000009999

As presented in Figures 6 and 7, for readability the service examples show only first-level
simple attributes. This is marked with a <<skipped>> label.

{
 "id": "00000000-5555-6666-7777-000000009999",
 "description": "IPVC End Point",
 "externalId": "BUS_IPVC_END_POINT-0001",
 "serviceType": "Internet Access",
 "state": "active",
 "name": "IPVCEndpoint",
 "serviceRelationship": [
 { << relation to IP UNI >>
 "relationshipType": "CONNECTS_TO_IPUNI",
 "service": {
 "id": "IP_UNI_0000-0001"
 }
 },
 { << relation to IPVC >>
 "relationshipType": "IPUNI_ENDPOINT_OF_IPVC",
 "service": {
 "id": "00000000-5555-6666-7777-000000008888"
 }
 }
],
 "serviceConfiguration": {
 "@type": "urn:mef:lso:spec:legato:ipvc-end-point:v0.0.1:all",
 "administrativeState": {
 "state": "UNLOCKED"
 },
 "operationalState": {
 "state": "ENABLED"
 },

25 / 57

 "identifier": "IPVC-EndPoint-0000-0001",
 "eiType": "UNI",
 "role": "ROOT",
 "prefixMapping": {}, <<skipped>>
 "maximumNumberOfIpv4Routes": 2,
 "maximumNumberOfIpv6Routes": 0,
 "ingressClassOfServiceMap": {}, <<skipped>>
 "egressClassOfServiceMap": {}, <<skipped>>
 "ingressBwpEnvelope": {}, <<skipped>>
 "egressBwpEnvelope": {} <<skipped>>
 }
}

[R8] In case id does not allow finding a Service in SOF's system, an error response Error404
MUST be returned.

6.1.1. Service State Machine

The Inventory reflects the actual state of the Service. The lifecycle of a Service is presented
in Figure 11. The labels of the transitions are informative "use cases" names.

Figure 11. Service State Machine

Additions and changes to Services in the Service Inventory can be performed with use of
Service Orders and the Service Order Management API, or by the request of the SOF.

A detailed description of each state can be found in the Table 7 below.

State Description

feasibilityChecked
Initial check whether the necessary resources are available and
sufficient for the installation of a given service.

26 / 57

State Description

designed
The Service is designed. The resources are identified and/or
allocated, but not reserved.

reserved All required resources for the given service are reserved and ready.

inactive The service is deactivated and is no longer available.

active The service is fully available and active

terminated
The service is 'logically deleted'. All associated resources are freed
and made available for service to other users.

Table 7. Service states

6.1.2. Specifying Place Details

Some service specifications may define requirements for place relationships. As shown in
the example in Figure 8, an IP UNI Access Link Trunk service has an INSTALL_LOCATION place
relation.

There are different formats in which place information may be provided: MEFGeographicPoint,
FieldedAddress, FormattedAddress, GeographicAddressLabel, GeographicSiteRef, GeographicAddressRef. The first four
of them can be used to provide place description by value. The site and address reference
allow specifying the place information as a reference to previously validated address or site
available through SOF's Addressing and Site API endpoints, which definition is provided in
the SDK:

productApi/serviceability/address/geographicAddressManagement.api.yaml

productApi/serviceability/site/geographicSiteManagement.api.yaml

The Address Validation and Site APIs are standardized by:

Address, Service Site, and Product Offering Qualification Management, Requirements
and Use Cases MEF 79
Amendment to MEF 79: Address, Service Site, and Product Offering Qualification
Management, Requirements, and Use Cases MEF 79.0.1
Amendment to MEF 79: Address Validation MEF 79.0.2
LSO Cantata and LSO Sonata Address Management API - Developer Guide MEF 121
LSO Cantata and LSO Sonata Site Management API - Developer Guide MEF 122

The superclass for all address types is the RelatedPlaceRefOrValue which adds the role to add more
context to the specified address. To distinguish between place types the @type discriminator is
used.

Note: The RefOrValue stands for a pattern where an address can be provided either by id
(using GeographicSiteRef or GeographicAddressRef) OR by value (with use of MEFGeographicPoint,

27 / 57

FieldedAddress, FormattedAddress, GeographicAddressLabel). There is no way to specify an address with
use both ref AND value at the same time.

Figure 12. The data model for place representation

Examples of different place specification formats are provided below.

6.1.2.1. Fielded Address

{
 "@type": "FieldedAddress",
 "streetType": "ul.",
 "streetName": "Edmunda Wasilewskiego",
 "streetNr": "20",
 "streetNrSuffix": "14",
 "city": "Kraków",
 "stateOrProvince": "Lesser Poland",
 "postcode": "30-305",
 "country": "Poland",
 "geographicSubAddress": {
 "levelType": "floor",
 "levelNumber": "4"
 },
 "role": "INSTALL_LOCATION"
}

Fielded address example of a place specification. The type discriminator has the value
FieldedAddress. A subset of available attributes is used to describe the place. The fielded
address has an optional geographicSubAddress structure that defines several attributes that can be
used in case precise address information has to be provided. In the example above, a floor in
the building at the given address is specified using this structure. The role of the place is
assigned according to the requirements of the Operator UNI service specification.

6.1.2.2. Formatted Address

28 / 57

{
 "@type": "FormattedAddress",
 "addrLine1": "ul. Edmunda Wasilewskiego 20/14",
 "addrLine2": "Floor 4",
 "city": "Kraków",
 "stateOrProvince": "Lesser Poland",
 "postcode": "30-305",
 "country": "Poland",
 "role": "INSTALL_LOCATION"
}

Place information in a form of a formatted address. The type discriminator has the value
FormattedAddress. This example contains the same information as the previous FieldedAddress
example.

6.1.2.3. Geographic Point

{
 "@type": "MEFGeographicPoint",
 "spatialRef": "EPSG:4326 WGS 84",
 "x": "50.048868",
 "y": "19.929523",
 "role": "INSTALL_LOCATION"
}

Place information in a form of a geographic point. spatialRef determines the standard that has
to be used to interpret coordinates provided in the required x (latitude), y (longitude), and
optional z (elevation) values.

This type allows only providing a point. It cannot carry more detailed information like the
floor number from previous examples.

[R9] The spatialRef value that can be used MUST be agreed between BUS and SOF.

6.1.2.4. Geographic Address Label

{
 "@type": "GeographicAddressLabel",
 "externalReferenceType": "CLLI",
 "externalReferenceId": "PLTXCL01",
 "role": "INSTALL_LOCATION"
}

The Geographic Address Label represents a unique identifier controlled by a generally
accepted independent administrative authority that specifies a fixed geographical location.
The example above is a place that represents a CLLI (Common Language Location
Identifier) identifier which is commonly used to refer locations in North America for
network equipment installations.

6.1.2.5. Geographic Site Reference

29 / 57

{
 "@type": "GeographicSiteRef",
 "id": "18d3bb74-997a-4a62-8198-84250766765a",
 "role": "INSTALL_LOCATION"
}

GeographicSiteRef type is used to specify a GeographicSite by reference in the request. In the above
example, a GeographicSite identified as 18d3bb74-997a-4a62-8198-84250766765a in the SOFs Service Site
API is used.

6.1.2.6. Geographic Address Reference

{
 "@type": "GeographicAddressRef",
 "id": "8198bb74-18d3-9ef0-4913-66765a842507",
 "role": "INSTALL_LOCATION"
}

GeographicAddressRef type is used to specify a GeographicAddress by reference in the request. In the
above example, a GeographicAddress identified as 8198bb74-18d3-9ef0-4913-66765a842507 in the SOFs
Service Site API is used.

6.2. Use case 2: Retrieve Service List

The BUS can retrieve a list of Services by using a GET /service operation with desired filtering
criteria.

[O3] The BUS's request MAY contain none or more of the following attributes:

state

serviceDate.lt

serviceDate.gt

startDate.lt

startDate.gt

endDate.lt

endDate.gt

serviceOrder.id

serviceOrderItem.id

externalId

geographicSite.id

geographicAddress.id

serviceType

startMode

The flow is a simple request-response pattern, as presented in Figure 13:

30 / 57

Figure 13. Use case 2: Retrieve Service List flow

The response is a list of Service instances, which model is the same as in the retrieve by
identifier use case and is presented in Figure 10.

https://serverRoot/mefApi/legato/serviceInventory/v5/service?status=avtive

The example above shows a BUS's request to get all Services that are in the active status. The
correct response (HTTP code 200) in the response body contains a list of Service objects
matching the criteria.

The snippet below shows an example of a response with 1 service matched:

[
 {
 "id": "00000000-5555-6666-7777-000000009999",
 "description": "IPVC End Point",
 "externalId": "BUS_IPVC_END_POINT-0001",
 "serviceType": "Internet Access",
 "state": "active",
 "name": "IPVCEndpoint",
 "serviceRelationship": [
 { << relation to IP UNI >>
 "relationshipType": "CONNECTS_TO_IPUNI",
 "service": {
 "id": "IP_UNI_0000-0001"
 }
 },
 { << relation to IPVC >>
 "relationshipType": "IPUNI_ENDPOINT_OF_IPVC",
 "service": {
 "id": "00000000-5555-6666-7777-000000008888"
 }
 }
],
 "serviceConfiguration": {
 "@type": "urn:mef:lso:spec:legato:ipvc-end-point:v0.0.1:all",
 "administrativeState": {
 "state": "UNLOCKED"
 },
 "operationalState": {
 "state": "ENABLED"
 },
 "identifier": "IPVC-EndPoint-0000-0001",
 "eiType": "UNI",
 "role": "ROOT",
 "prefixMapping": {}, <<skipped>>
 "maximumNumberOfIpv4Routes": 2,
 "maximumNumberOfIpv6Routes": 0,
 "ingressClassOfServiceMap": {}, <<skipped>>
 "egressClassOfServiceMap": {}, <<skipped>>
 "ingressBwpEnvelope": {}, <<skipped>>
 "egressBwpEnvelope": {} <<skipped>>
 }
 },

31 / 57

 {
 "description": "IP Virtual Connection",
 "externalId": "BUS_IPVC-0001",
 "serviceType": "Internet Access",
 "name": "IPVC",
 "state": "active",
 "relatedContactInformation": [
 {
 "emailAddress": "BUS.ServiceOrderItemContact@example.com",
 "name": "BUS Service Order Item Contact",
 "number": "+12-345-678-90",
 "role": "busServiceOrderItemContact"
 }
],
 "serviceConfiguration": {
 "@type": "urn:mef:lso:spec:legato:ipvc:v0.0.1:all",
 "administrativeState": {
 "state": "UNLOCKED"
 },
 "operationalState": {
 "state": "ENABLED"
 },
 "ipvcIdentifier": "IPVC-0000-0001",
 "ipvcTopology": "CLOUD_ACCESS",
 "packetDelivery": "STANDARD_ROUTING",
 "maximumNumberOfIpv4Routes": 1,
 "maximumNumberOfIpv6Routes": 0,
 "dscpPreservation": "ENABLED",
 "serviceLevelSpecification": {}, <<skipped>>
 "maximumTransferUnit": 1522,
 "pathMtuDiscovery": "ENABLED",
 "fragmentation": "DISABLED",
 "cloud": {}, <<skipped>>
 "reservedPrefixes": {}, <<skipped>>
 "listOfClassOfServiceNames": ["low"]
 }
 }
]

[R10] The BUS MUST be able to perform BUS Inventory Query without any filter criteria.

[R11] In case no items matching the criteria are found, the SOF MUST return a valid
response with an empty list.

[O4] The SOF MAY place a limit on the length of the list returned.

[O5] If the BUS Inventory Query exceeds that length, the SOF MAY return an error
(Error422) indicating that the list is too long.

A response to retrieve a list of results can be paginated. The BUS can specify following
query attributes related to pagination:

limit - number of expected list items
offset - offset of the first element in the result list

The filtering and pagination attributes must be specified in URI query format RFC3986. The
SOF returns a list of elements that comply with the requested limit. If the requested limit is
higher than the supported list size the smaller list result is returned. In that case, the size of
the result is returned in the header attribute X-Result-Count. The SOF can indicate that there are
additional results available using:

X-Total-Count header attribute with the total number of available results

32 / 57

X-Pagination-Throttled header set to true

https://serverRoot/mefApi/legato/serviceInventory/v5/service?state=active&limit=10&offset=0

The example above shows a BUS's request to get all Services that are in the active state.
Additionally, the BUS asks only for a first (offset=0) pack of 10 results (limit=10) to be
returned. The correct response (HTTP code 200) in the response body contains a list of Service
objects matching the criteria.

6.3. Use case 3: Register for Notifications

The SOF communicates with the BUS with Notifications provided that:

BUS supports a notification mechanism
BUS has registered to receive notifications from the SOF

[O6] BUS MAY register for Notifications.

Supporting Notification is mandatory for SOF.

To register for notifications the BUS uses the registerListener operation from the API: POST /hub.
The request contains only 2 attributes:

callback - mandatory, to provide the callback address the events will be notified to,
query - optional, to provide the required types of event.

Figure 14 shows all entities involved in the Notification use cases.

Figure 14. Service Inventory Notification Data Model

By using a simple request:

33 / 57

{
 "callback": "https://bus.com/listenerEndpoint"
}

The BUS subscribes for notification of all types of events. Those are:

serviceCreateEvent

serviceDeleteEvent

serviceStateChangeEvent

If the BUS wishes to receive only notifications of a certain type, a query must be added:

{
 "callback": "https://bus.com/listenerEndpoint",
 "query": "eventType=serviceStateChangeEvent"
}

If the BUS wishes to subscribe to 2 different types of events, there are 2 possible syntax
variants [TMF630]:

eventType=serviceStateChangeEvent,serviceDeleteEvent

or

eventType=serviceStateChangeEvent&eventType=serviceDeleteEvent

The query formatting complies with RFC3986 RFC3986. According to it, every attribute
defined in the Event model (from notification API) can be used in the query. However, this
standard requires only eventType attribute to be supported.

[R12] eventType is the only attribute that the SOF MUST support in the query.

The SOF responds to the subscription request by adding the id of the subscription to the
message that must be further used for unsubscribing.

{
 "id": "00000000-0000-0000-0000-000000000678",
 "callback": "https://bus.com/listenerEndpoint",
 "query": "eventType=serviceStateChangeEvent"
}

Example of a final address that the Notifications will be sent to (for serviceStateChangeEvent):

https://bus.com/listenerEndpoint/mefApi/legato/serviceInventoryNotification/v5/listener/serviceStateChangeEven

t

34 / 57

6.4. Use case 4: Send Notification

Notifications are used to asynchronously inform the BUS about the respective objects and
attributes changes.

Note: The state change notification is sent only when the state attribute actually changes its
value. There are no status change notifications sent upon Service creation.

[R13] The SOF MUST NOT send Notifications to BUS that have not registered for them.

[R14] The SOF MUST send Notifications to BUS that have registered for them.

Following snippets present example of serviceStateChangeEvent a

{
 "eventId": "event-001",
 "eventType": "serviceStateChangeEvent",
 "eventTime": "2022-12-28T20:45:24.796Z",
 "event": {
 "id": "00000000-5555-6666-7777-000000009999"
 }
}

Note: the body of the event carries only the source object's id. The BUS needs to query it
later by id to get details.

To stop receiving events, the BUS has to use the unregisterListener operation from the DELETE
/hub/{id} endpoint. The id is the identifier received from the SOF during the listener
registration.

35 / 57

7. API Details

7.1. API patterns

7.1.1. Indicating errors

Erroneous situations are indicated by appropriate HTTP responses. An error response is
indicated by HTTP status 4xx (for client errors) or 5xx (for server errors) and appropriate
response payload. The Service Inventory API uses the error responses as depicted and
described below.

Implementations can use HTTP error codes not specified in this standard in compliance with
rules defined in RFC 7231 [RFC7231]. In such a case, the error message body structure
might be aligned with the Error.

Figure 15. Data model types to represent an erroneous response

7.1.1.1. Type Error

Description: Standard Class used to describe API response error Not intended to be used
directly. The code in the HTTP header is used as a discriminator for the type of error returned
in runtime.

Name Type Description

message string
Text that provides mode details and corrective actions related to
the error. This can be shown to a client user.

reason* string
Text that explains the reason for the error. This can be shown to a
client user.

referenceError uri URL pointing to documentation describing the error

7.1.1.2. Type Error400

Description: Bad Request. (https://tools.ietf.org/html/rfc7231#section-6.5.1)

36 / 57

Inherits from:

Error

Name Type Description

code* Error400Code

One of the following error codes: - missingQueryParameter: The
URI is missing a required query-string parameter -
missingQueryValue: The URI is missing a required query-string
parameter value - invalidQuery: The query section of the URI is
invalid. - invalidBody: The request has an invalid body

7.1.1.3. enum Error400Code

Description: One of the following error codes:

missingQueryParameter: The URI is missing a required query-string parameter
missingQueryValue: The URI is missing a required query-string parameter value
invalidQuery: The query section of the URI is invalid.
invalidBody: The request has an invalid body

Value

missingQueryParameter

missingQueryValue

invalidQuery

invalidBody

7.1.1.4. Type Error401

Description: Unauthorized. (https://tools.ietf.org/html/rfc7235#section-3.1)

Inherits from:

Error

Name Type Description

code* Error401Code
One of the following error codes: - missingCredentials: No
credentials provided. - invalidCredentials: Provided credentials
are invalid or expired

7.1.1.5. enum Error401Code

Description: One of the following error codes:

37 / 57

missingCredentials: No credentials provided.
invalidCredentials: Provided credentials are invalid or expired

Value

missingCredentials

invalidCredentials

7.1.1.6. Type Error403

Description: Forbidden. This code indicates that the server understood the request but
refuses to authorize it. (https://tools.ietf.org/html/rfc7231#section-6.5.3)

Inherits from:

Error

Name Type Description

code* Error403Code

This code indicates that the server understood the request but
refuses to authorize it because of one of the following error
codes: - accessDenied: Access denied - forbiddenRequester:
Forbidden requester - tooManyUsers: Too many users

7.1.1.7. enum Error403Code

Description: This code indicates that the server understood the request but refuses to
authorize it because of one of the following error codes:

accessDenied: Access denied
forbiddenRequester: Forbidden requester
tooManyUsers: Too many users

Value

accessDenied

forbiddenRequester

tooManyUsers

7.1.1.8. Type Error404

Description: Resource for the requested path not found.
(https://tools.ietf.org/html/rfc7231#section-6.5.4)

Inherits from:

38 / 57

Error

Name Type Description

code* string
The following error code: - notFound: A current representation for the
target resource not found

7.1.1.9. Type Error422

The response for HTTP status 422 is a list of elements that are structured using the Error422
data type. Each list item describes a business validation problem. This type introduces the
propertyPath attribute which points to the erroneous property of the request, so that the BUS
may fix it easier. It is highly recommended that this property should be used, yet remains
optional because it might be hard to implement.

Description: Unprocessable entity due to a business validation problem.
(https://tools.ietf.org/html/rfc4918#section-11.2)

Inherits from:

Error

Name Type Description

code* Error422Code

One of the following error codes: - missingProperty: The
property that was expected is not present in the payload -
invalidValue: The property has an incorrect value -
invalidFormat: The property value does not comply with
the expected value format - referenceNotFound: The
object referenced by the property cannot be identified in
the target system - unexpectedProperty: Additional, not
expected property has been provided - tooManyRecords:
the number of records to be provided in the response
exceeds the threshold. - otherIssue: Other problem was
identified (detailed information provided in a reason)

propertyPath string

A pointer to a particular property of the payload that
caused the validation issue. It is highly recommended that
this property should be used. Defined using JavaScript
Object Notation (JSON) Pointer
(https://tools.ietf.org/html/rfc6901).

7.1.1.10. enum Error422Code

Description: One of the following error codes:

39 / 57

missingProperty: The property that was expected is not present in the payload
invalidValue: The property has an incorrect value
invalidFormat: The property value does not comply with the expected value format
referenceNotFound: The object referenced by the property cannot be identified in the
target system
unexpectedProperty: Additional, not expected property has been provided
tooManyRecords: the number of records to be provided in the response exceeds the
threshold.
otherIssue: Other problem was identified (detailed information provided in a reason)

Value

missingProperty

invalidValue

invalidFormat

referenceNotFound

unexpectedProperty

tooManyRecords

otherIssue

7.1.1.11. Type Error500

Description: Internal Server Error. (https://tools.ietf.org/html/rfc7231#section-6.6.1)

Inherits from:

Error

Name Type Description

code* string
The following error code: - internalError: Internal server error - the server
encountered an unexpected condition that prevented it from fulfilling the
request.

7.2. Management API Data model

Figure 16 presents the whole Service Inventory data model. The data types are discussed
later in this section.

40 / 57

Figure 16. Service Inventory Data Model

7.2.1. Service

7.2.1.1 Type Service

Description: The Service instance managed by SOF and retrievable by an BA over the
Legato IRP via the Service Inventory API.

Name Type Multiplicity Description

description string 0..1
Free-text description of
the service

endDate date-time 0..1
Date when the service
ends

externalId string 0..1
ID given by the
consumer to facilitate
searches

note Note_BusSof[] 0..*

Extra-information about
the order; e.g. useful to
add extra delivery
information that could be
useful for a human
process

41 / 57

Name Type Multiplicity Description

place RelatedPlaceRefOrValue[] 0..*

The relationships
between this Service
Order Item and one or
more Places as defined in
the Service Specification.

relatedContactInformation RelatedContactInformation[] 0..*

Contact information of
an individual or
organization playing a
role for this Service.

serviceConfiguration MefServiceConfiguration 0..1

MefServiceConfiguration
is used to specify the
MEF specific service
payload. This field
MUST be populated for
all item 'actions' other
than 'delete'. It MUST
NOT be populated when
an item `action` is
`delete`. The @type is
used as a discriminator.

serviceDate string 0..1
Date when the service
was created (whatever its
status).

serviceOrderItem ServiceOrderItemRef[] 0..*
A list of service order
items related to this
service

serviceRelationship ServiceRelationship[] 0..*

A list of service
relationships. Describes
links with other
service(s) in the
inventory.

serviceType string 0..1
Business type of the
service

startDate date-time 0..1
Date when the service
starts

42 / 57

Name Type Multiplicity Description

startMode string 0..1

This attribute is an
enumerated integer that
indicates how the Service
is started, such as: 0:
Unknown; 1:
Automatically by the
managed environment; 2:
Automatically by the
owning device; 3:
Manually by the Provider
of the Service; 4:
Manually by a Customer
of the Provider; 5: Any
of the above

state ServiceStateType 0..1
The life cycle state of the
service.

7.2.1.2. enum ServiceStateType

Description: List of possible state for the Service.

Value Description

feasibilityChecked
Initial check whether the necessary resources are available and
sufficient for the installation of a given service.

designed
The Service is designed. The resources are identified and/or
allocated, but not reserved.

reserved All required resources for given service are reserved and ready.

inactive The service is deactivated and is no longer available.

active The service is fully available and active

terminated
The service is 'logically deleted'. All associated resources are freed
and made available for service to other users.

7.2.1.3. Type ServiceRelationship

Description: A relationship to an existing Service. The requirements for usage for given
Service are described in the Service Specification.

Name Type Multiplicity Description

43 / 57

Name Type Multiplicity Description

relationshipType* string 1

Specifies the type (nature) of the
relationship to the related Service. The
nature of required relationships varies for
Services of different types. For example, a
UNI or ENNI Service may not have any
relationships, but an Access E-Line may
have two mandatory relationships (related
to the UNI on one end and the ENNI on
the other). More complex Services such
as multipoint IP or Firewall Services may
have more complex relationships. As a
result, the allowed and mandatory
`relationshipType` values are defined in
the Service Specification.

service* ServiceRef 1 A reference to a Service

7.2.1.4. Type ServiceOrderItemRef

Description: A reference to a Service Order Item. When referencing item from within the
same Service Order, the serviceOrderId and serviceOrderHref MUST be empty.

Name Type Multiplicity Description

itemId* string 1
Identifier of referenced item within the
referenced Service Order

serviceOrderHref string 0..1
Link to the order to which the referenced item
belongs to

serviceOrderId string 0..1
Identifier of the order to which the referenced
item belongs to

7.2.1.5. Type ServiceRef

Description: Reference to a Service instance.

Name Type Multiplicity Description

href uri 0..1 Hyperlink reference to Service

id* string 1 unique identifier of Service

7.2.1.6. Type MefServiceConfiguration

44 / 57

Description: MefServiceConfiguration is used as an extension point for MEF specific
service payload. The @type attribute is used as a discriminator

Name Type Multiplicity Description

@type* string 1
The value of the "$id" as defined in the JSON schema of
the service.

7.2.2. Place representation

There are several formats in which place information can be provided for a Service. They
are described in Section 6.1.2.

7.2.2.1. Type RelatedPlaceRefOrValue

Description: A Place provided either by value or by reference

Name Type Multiplicity Description

@type* string 1

This field is used as a discriminator and is
used between different place representations.
This type might discriminate for additional
related place as defined in '@schemaLocation'.

@schemaLocation uri 0..1
A URI to a JSON-Schema file that defines
additional attributes and relationships. May be
used to define additional related place types.

role* string 1 Role of this place

7.2.2.2. Type FieldedAddress

Description: A type of Address that has a discrete field and value for each type of boundary
or identifier down to the lowest level of detail. For example "street number" is one field,
"street name" is another field, etc. Reference: MEF 79 (Sn 8.9.2)

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

city* string 1
The city that the address
is in

country* string 1
Country that the address
is in

45 / 57

Name Type Multiplicity Description

geographicSubAddress GeographicSubAddress 0..1
Additional fields used to
specify an address, as
detailed as possible.

locality string 0..1
The locality that the
address is in

postcode string 0..1

Descriptor for a postal
delivery area, used to
speed and simplify the
delivery of mail (also
known as zip code)

postcodeExtension string 0..1

An extension of a postal
code. E.g. the part
following the dash in a
US urban property
address

stateOrProvince string 0..1
The State or Province
that the address is in

streetName* string 1
Name of the street or
other street type

streetNr string 0..1

Number identifying a
specific property on a
public street. It may be
combined with
streetNrLast for ranged
addresses. MEF 79
defines it as required
however as in certain
countries it is not used
we make it optional in
API.

streetNrLast string 0..1
Last number in a range
of street numbers
allocated to a property

streetNrLastSuffix string 0..1
Last street number
suffix for a ranged
address

streetNrSuffix string 0..1
The first street number
suffix

46 / 57

Name Type Multiplicity Description

streetSuffix string 0..1
A modifier denoting a
relative direction

streetType string 0..1

The type of street (e.g.,
alley, avenue,
boulevard, brae,
crescent, drive,
highway, lane, terrace,
parade, place, tarn, way,
wharf)

7.2.2.3. Type FieldedAddressValue

Description: A type of Address that has a discrete field and value for each type of boundary
or identifier down to the lowest level of detail. For example "street number" is one field,
"street name" is another field, etc. Reference: MEF 79 (Sn 8.9.2)

Name Type Multiplicity Description

city* string 1
The city that the address
is in

country* string 1
Country that the address
is in

geographicSubAddress GeographicSubAddress 0..1
Additional fields used to
specify an address, as
detailed as possible.

locality string 0..1
The locality that the
address is in

postcode string 0..1

Descriptor for a postal
delivery area, used to
speed and simplify the
delivery of mail (also
known as zip code)

postcodeExtension string 0..1

An extension of a postal
code. E.g. the part
following the dash in a
US urban property
address

stateOrProvince string 0..1
The State or Province
that the address is in

47 / 57

Name Type Multiplicity Description

streetName* string 1
Name of the street or
other street type

streetNr string 0..1

Number identifying a
specific property on a
public street. It may be
combined with
streetNrLast for ranged
addresses. MEF 79
defines it as required
however as in certain
countries it is not used
we make it optional in
API.

streetNrLast string 0..1
Last number in a range
of street numbers
allocated to a property

streetNrLastSuffix string 0..1
Last street number
suffix for a ranged
address

streetNrSuffix string 0..1
The first street number
suffix

streetSuffix string 0..1
A modifier denoting a
relative direction

streetType string 0..1

The type of street (e.g.,
alley, avenue,
boulevard, brae,
crescent, drive,
highway, lane, terrace,
parade, place, tarn, way,
wharf)

7.2.2.4. Type FormattedAddress

Description: A type of Address that has discrete fields for each type of boundary or
identifier with the exception of street and more specific location details, which are
combined into a maximum of two strings based on local postal addressing conventions.
Reference: MEF 79 (Sn 8.9.3)

Inherits from:

48 / 57

RelatedPlaceRefOrValue

Name Type Multiplicity Description

addrLine1* string 1 The first address line in a formatted address

addrLine2 string 0..1 The second address line in a formatted address

city* string 1 The city that the address is in

country* string 1 Country that the address is in

locality string 0..1

An area of defined or undefined boundaries
within a local authority or other legislatively
defined area, usually rural or semi-rural in
nature

postcode string 0..1
Descriptor for a postal delivery area, used to
speed and simplify the delivery of mail (also
known as ZIP code)

postcodeExtension string 0..1
An extension of a postal code. E.g. the part
following the dash in an US urban property
address

stateOrProvince string 0..1 The State or Province that the address is in

7.2.2.5. Type GeographicPoint

Description: A GeographicPoint defines a geographic point through coordinates.
Reference: MEF 79 (Sn 8.9.5)

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

spatialRef* string 1

The spatial reference system used to determine the
coordinates (e.g. "WGS84"). The system used and the
value of this field are to be agreed during the
onboarding process.

x* string 1
The latitude expressed in the format specified by the
`spacialRef`

y* string 1
The longitude expressed in the format specified by the
`spacialRef`

z string 0..1
The elevation expressed in the format specified by the
`spacialRef`

49 / 57

7.2.2.6. Type GeographicAddressLabel

Description: A unique identifier controlled by a generally accepted independent
administrative authority that specifies a fixed geographical location. Reference: MEF 79 (Sn
8.9.4)

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

externalReferenceId* string 1 A reference to an address by id

externalReferenceType* string 1

Uniquely identifies the authority that
specifies the addresses reference and/or
its type (if the authority specifies more
than one type of address). The value(s)
to be used are to be agreed during the
onboarding. For North American
providers this would normally be CLLI
(Common Language Location Identifier)
code.

7.2.2.7. Type GeographicSubAddress

Description: Additional fields used to specify an address, as detailed as possible.

Name Type Multiplicity Description

buildingName string 0..1

Allows for
identification of
places that require
building name as
part of addressing
information

levelNumber string 0..1

Used where a level
type may be
repeated e.g.
BASEMENT 1,
BASEMENT 2

levelType string 0..1
Describes level
types within a
building

50 / 57

Name Type Multiplicity Description

privateStreetName string 0..1

"Private streets
internal to a
property (e.g. a
university) may
have internal names
that are not recorded
by the land title
office

privateStreetNumber string 0..1
Private streets
numbers internal to
a private street

subUnit GeographicSubAddressUnit[] 0..*

Representation of a
MEFSubUnit It is
used for describing
subunit within a
subAddress e.g.
BERTH, FLAT,
PIER, SUITE,
SHOP, TOWER,
UNIT, WHARF.

7.2.2.8. Type GeographicSubAddressUnit

Description: Allows for sub unit identification

Name Type Multiplicity Description

subUnitNumber* string 1
The discriminator used for the subunit, often
just a simple number but may also be a range.

subUnitType* string 1
The type of subunit e.g.BERTH, FLAT, PIER,
SUITE, SHOP, TOWER, UNIT, WHARF.

7.2.2.9. Type GeographicAddressRef

Description: A reference to a Geographic Address resource available through Address
Validation API.

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

51 / 57

Name Type Multiplicity Description

href string 0..1

Hyperlink to the referenced GeographicAddress. Hyperlink
MAY be provided by the SOF in responses. Hyperlink
MUST be ignored by the SOF in case it is provided by the
BA in a request

id* string 1
Identifier of the referenced Geographic Address. This
identifier is assigned during a successful address validation
request (Geographic Address Validation API)

7.2.2.10. Type GeographicSiteRef

Description: A reference to a Geographic Site resource available through Service Site API

Inherits from:

RelatedPlaceRefOrValue

Name Type Multiplicity Description

href string 0..1

Hyperlink to the referenced GeographicSite. Hyperlink
MAY be provided by the SOF in responses. Hyperlink
MUST be ignored by the SOF in case it is provided by the
BA in a request

id* string 1 Identifier of the referenced Geographic Site.

7.2.3. Notification registration

Notification registration and management are done through /hub API endpoint. The below
sections describe data models related to this endpoint.

7.2.3.1. Type EventSubscriptionInput

Description: This class is used to register for Notifications.

Name Type Multiplicity Description

callback* string 1

This callback value must be set to *host* property from BUS Service
(serviceInventoryNotification.api.yaml). This property is appended w
specified in that API to construct an URL to which notification is sen
"https://bus.com/listenerEndpoint", the service state change event no
`https://bus.com/listenerEndpoint/mefApi/legato/serviceInventoryNo

52 / 57

Name Type Multiplicity Description

query string 0..1

This attribute is used to define to which type of events to register to.
serviceStateChangeEvent". To subscribe for more than one event typ
`eventType=serviceCreateEvent,serviceStateChangeEvent`. The poss
'ServiceEventType' in serviceInventoryNotification.api.yaml. An em
ending in subscription for all event types.

7.2.3.2. Type EventSubscription

Description: This resource is used to respond to notification subscriptions.

Name Type Multiplicity Description

callback* string 1
The value provided by in `EventSubscriptionInput`
during notification registration

id* string 1
An identifier of this Event Subscription assigned when
a resource is created.

query string 0..1
The value provided by the `EventSubscriptionInput`
during notification registration

7.2.4. Common

Types described in this subsection are shared among two or more LSO APIs.

7.2.4.1. enum BusSofType

Description: An enumeration with BUS and SOF values.

Value MEF 99 Description

bus BUS

sof SOF

7.2.4.2. Type Note_BusSof

Description: Extra information about a given entity. Only useful in processes involving
human interaction. Not applicable for an automated process.

Name Type Multiplicity Description

author* string 1 Author of the note

date* date-time 1 Date of the note

53 / 57

Name Type Multiplicity Description

id* string 1
Identifier of the note within its containing entity
(may or may not be globally unique, depending on
provider implementation)

source* BusSofType 1 Indicates if this Note was added by BUS or SOF.

text* string 1 Text of the note

7.2.4.3. Type RelatedContactInformation

Description: Contact information of an individual or organization playing a role for this
Service. The rule for mapping a represented attribute value to a role is to use the
lowerCamelCase pattern.

Name Type Multiplicity Description

emailAddress* string 1 Email address

name* string 1 Name of the contact

number* string 1 Phone number

numberExtension string 0..1 Phone number extension

organization string 0..1
The organization or company
that the contact belongs to

postalAddress FieldedAddressValue 0..1
Identifies the postal address of
the person or office to be
contacted.

role* string 1
A role the party plays in a given
context.

The role attribute is used to provide a reason the particular party information is used. It can
result from business requirements (e.g. SOF Contact Information) or from the Service
Specification requirements.

The rule for mapping a represented attribute value to a role is to use the lowerCamelCase
pattern e.g.

BUS Contact: role equal to busInformation
SOF Contact: role equal to sofContact

7.3. Notification API Data model

Figure 17 presents the Service Inventory Notification data model.

54 / 57

Figure 17. Service Inventory Notification Data Model

This data model is used to construct requests and responses of the API endpoints described
in Section 5.2.2.

7.3.1. Type Event

Description: Event class is used to describe information structure used for notification.

Name Type Multiplicity Description

eventId* string 1 Id of the event

eventTime* date-time 1 Date-time when the event occurred

7.3.2. Type ServiceEvent

Description:

Inherits from:

Event

Name Type Multiplicity Description

eventType* ServiceEventType 1 Indicates the type of the event.

event* ServiceEventPayload 1
A reference to the Service that is
source of the notification.

7.3.3. Type ServiceEventPayload

Description: The identifier of the Service being subject of this event.

Name Type Multiplicity Description

55 / 57

Name Type Multiplicity Description

id* string 1 ID of the Service

href string 0..1 Hyperlink to access the Service

7.3.4. enum ServiceEventType

Description: Indicates the type of Service event.

Value

serviceCreateEvent

serviceDeleteEvent

serviceStateChangeEvent

serviceAttributeValueChangeEvent

56 / 57

8. References

JSON Schema draft 7, JSON Schema: A Media Type for Describing JSON Documents
and associated documents, by Austin Wright and Henry Andrews, March 2018.
Copyright © 2018 IETF Trust and the persons identified as the document authors. All
rights reserved.
MEF 10.4, Subscriber Ethernet Services Attributes, December 2018
MEF 26.2, External Network Network Interface (ENNI) and Operator Service
Attributes, August 2016
MEF 55.1 Lifecycle Service Orchestration (LSO): Reference Architecture and
Framework, February 2021
MEF 61.1, IP Service Attributes, May 2019
MEF 61.1.1, Amendment to MEF 61.1: UNI Access Link Trunks, IP Addresses, and
Mean Time to Repair Performance Metric, July 2022
MEF 70, SD-WAN Service Attributes and Services, July 2019
MEF 79, Address, Service Site, and Product Offering Qualification Management,
Requirements and Use Cases, November 2019
MEF 79.0.1, Amendment to MEF 79: Address, Service Site, and Product Offering
Qualification Management, Requirements, and Use Cases, December 2020
MEF 79.0.2, Amendment to MEF 79: Address Validation, July 2021
[MEF W100], LSO Legato Service Specification - SD-WAN Schema Guide
[MEF W101], LSO Legato Service Specification - Carrier Ethernet Schema Guide
[MEF W102], LSO Legato Service Specification - IP/IP-VPN Schema Guide
MEF 121, LSO Cantata and LSO Sonata Address Management API - Developer Guide,
May 2022
MEF 122, LSO Cantata and LSO Sonata Site Management API - Developer Guide,
May 2022
MEF 128, LSO API Security Profile, July 2022
RFC2119, Key words for use in RFCs to Indicate Requirement Levels, by S. Bradner,
March 1997
RFC3986 Uniform Resource Identifier (URI): Generic Syntax, January 2005
RFC8174, Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words, by B.
Leiba, May 2017, Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
RFC7231, Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, June 2014
https://tools.ietf.org/html/rfc7231
TMF630 TMF630 API Design Guidelines 4.2.0
TMF638 TMF638 Service Inventory API User Guide, May 2020

https://json-schema.org/specification-links.html#draft-7
https://www.mef.net/wp-content/uploads/2018/12/MEF-10-4.pdf
https://www.mef.net/wp-content/uploads/2016/08/MEF-26-2.pdf
https://www.mef.net/wp-content/uploads/2021/02/MEF-55.1.pdf
https://www.mef.net/wp-content/uploads/2019/05/MEF-61-1.pdf
https://www.mef.net/wp-content/uploads/MEF-61.1.1.pdf
https://www.mef.net/wp-content/uploads/2019/07/MEF-70.pdf
https://www.mef.net/wp-content/uploads/2019/11/MEF-79.pdf
https://www.mef.net/wp-content/uploads/2020/12/MEF-79-0-1.pdf
https://www.mef.net/wp-content/uploads/MEF-79.0.2.pdf
https://www.mef.net/wp-content/uploads/MEF-121.pdf
https://www.mef.net/wp-content/uploads/MEF-122.pdf
https://www.mef.net/wp-content/uploads/MEF-128.pdf
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3986#section-3
https://tools.ietf.org/html/rfc8174
https://tools.ietf.org/html/rfc7231
https://www.tmforum.org/resources/specification/tmf630-rest-api-design-guidelines-4-2-0/
https://www.tmforum.org/resources/specification/tmf638-service-inventory-api-user-guide-v4-0-0/

57 / 57

Appendix A Acknowledgments

The following contributors participated in the development of this document and have
requested to be included in this list.

Mike BENCHECK

Michał ŁĄCZYŃSKI

Jack PUGACZEWSKI

Karthik SETHURAMAN

Mehmet TOY

